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Wireless sensor networks can use their monitoring sensors
to detect if and when an event is happening by monitoring
secondary effects on the physical environment. However, it is
often difficult to separate the effects of the event from the
intrinsic properties of the monitored environment, especially
since the effects will likely diminish with distance.

A naive approach to event detection is to set a threshold,
and signal an event if any sample is higher than it. This
particular approach suffers from a number of problems. If the
event effects fade quickly with distance, the sample may be
very close to normal conditions unless it is taken close to
the event. The design choices for a successful threshold-based
approach are either to have a very dense network, such that
there is always at least one sensor close to the event, or set
the threshold low enough, in which case noise in the readings
would result in frequent false positives.

Moreover, a large class of interesting events is transient.
A system has a limited time to analyze the environment
and decide whether an event has occurred. For this class of
events, energy constraints introduce an additional challenge.
In a threshold-based approach the sampling frequency must
be high enough to guarantee that at least one sensor that
is close to the event will be awake during it. Such high
frequency sample rates are not only very expensive, but are
often unrealizable. Recent work [1], [2] focused on optimizing
the distribution of sensors to maximize the accuracy of the
system (i.e., maximize the number of events detected while
minimizing the number of false positives) or synchronizing the
sleep schedule. Our system, TotalSense, aims to achieve the
same goal by making smarter use of the sampled information,
through a priori knowledge of the propagation model of the
physical event that is being monitored.

Our approach enables more accurate detection without the
need for high duty-cycles or high spatial densities. In To-
talSense, sensors farther from the event can still contribute
to the decision process. A bit of information that would
be meaningless by itself could make the difference when
integrated with all the other samples. Such cooperation can
provide a good accuracy even if no sensor is physically close
to the event. Any sample, taken at anytime, contributes to
an analysis to determine whether the collection of samples
can fit a scenario where the event has occurred. Our analysis
algorithm is based on the likelihood-ratio test [3], which
is used to make a decision between two hypotheses based
on which one fits better the observed scenario. Given a set
of samples we compute the likelihood function for spatial
position and time instant of the event. We then integrate it
over all possible spatial locations and over a time interval
ending at the current time and lasting the length of the
event. Finally, this result is compared with the same integral
based on the hypotheses that the event did not happen. An
alternative implementation of TotalSense, enables a distributed

computation of this integrals.
The main benefits of TotalSense are twofold. First, if the

duty-cycle and sampling frequency are the same, TotalSense
can provide a better accuracy compared to a threshold-based
approach. Furthermore, since TotalSense can base its decision
on samples that a traditional approach would consider mean-
ingless, we can enable longer sleep intervals without affecting
our accuracy. An active sensor far from the event location can
still contribute to the detection.

We evaluated the performance of TotalSense through sim-
ulations considering a model whose response in time is that
of a first order linear system and with a polynomial fading
in distance (e.g., inverse square law). This model is used in
control theory to describe the behavior of several physical
systems [4]. The poster includes results of our simulations
in a variety of scenarios obtained by changing the parameters
of the model. It is important to note that the general approach
of TotalSense can be applied to different physical models.

We simulated a physical environment characterized by
stationary conditions. We then perturbed these conditions
according to the physical model of the event. All measures are
affected by a Gaussian noise. A grid of sensors takes samples
at different rates and we applied TotalSense and the threshold-
based approach on the collected data.

The benefits of using a coordinated approach appear when
comparing the number of false positives that we must tolerate
to identify a certain fraction of the simulated events. When
the event is barely distinguishable from noise, TotalSense
is still able to correctly identify 100% of events with a no
false positives while to achieve the same goal the threshold-
based approach signals a false-positive occurrence in 70%
of simulations. Also, TotalSense is able to identify events
even when the sampling frequency is low. When the sampling
interval is 1.5 times the duration of the event, there is a
chance that no sensors near the event will be able to sense
its effects. Our integration enables a correct detection of more
than 70% of the events with no false positives. If the system
detection requirements are higher, TotalSense can detect more
events with a presence of false positives always lower than
that achieved by the threshold-based approach.

In the poster, we will provide a complete description of
our system, of the simulations and a more comprehensive set
of simulated results which compared the two approaches in a
large set of scenarios.
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