
Evidence of Log Integrity in Policy-based Security

Monitoring

Mirko Montanari, Jun Ho Huh, Derek Dagit, Rakesh B. Bobba, Roy H. Campbell

Information Trust Institute

University of Illinois at Urbana-Champaign

{mmontan2, jhhuh, dagit, rbobba, rhc}@illinois.edu

Abstract—Monitoring systems are commonly used by many
organizations to collect information about their system and
network operations. Typically, SNMP, IDS, or software agents
generate log data and store them in a centralized monitoring
system for analysis. However, malicious employees, attackers,
or even organizations themselves can modify such data to hide
malicious activities or to avoid expensive non-compliance fines.

This paper proposes a cloud-based framework for verifying the
trustworthiness of the logs based on a small amount of evidence
data. A simple Cloud Security Monitoring (CSM) API, made
available on the cloud services, allows organizations operating
on the cloud to collect additional “evidence” about their systems.
Such evidence is used to verify system compliance against the
policies set by security managers or regulatory authorities.
We present a strategy for randomly auditing and verifying
resource compliance, and propose an architecture that allows
the organizations to prove compliance to an external auditing
agency.

I. INTRODUCTION

Even when running on the cloud, the infrastructure of an

organization is subject to the requirements set by security

managers and regulations like the Payment Card Industry

Data Security Standard (PCI-DSS) [1] or the Federal Security

Management Act (FISMA) [2]. Organizations often monitor

their compliance using policy-based monitoring systems—

these detect violation of security requirements and regulations.

However, most of the information generated by user-operated

monitoring tools such as Nagios1 or SNMP daemons can be

manipulated by tampering with the programs that collect the

logs or by injecting false information into the monitoring

system. Such compromised data may be used to hide malicious

problems or to hide system configuration problems and avoid

expensive non-compliance fines.

In this paper we focus on policy-based monitoring systems

and propose a framework that uses information generated by

cloud providers to verify trustworthiness of the reported mon-

itoring information (logs). Cloud providers collect a partial

view of the users’ systems by monitoring their infrastructure

with methods that are independent from the user-operated

monitoring system. We show that a simple Cloud Security

Monitoring (CSM) API available from the cloud provider

enables organizations to “query” such a partial view and

collect additional “evidence” about the operations of their

systems—this evidence is used as an additional source of

1www.nagios.org

information to raise the bar against attacks, and to help with

the compliance checks. The CSM API provides the users

with ability to sample the state of their hosts and verify the

trustworthiness (integrity) of the information that is provided

to the monitoring system.

We rely on existing techniques like Virtual Machine Intro-

spection (VMI) [10] and host virtual machine based network

monitoring to acquire the additional evidence. Because such

monitoring techniques typically provide only partial views on a

user’s system and incur performance overheads, our approach

uses a novel resource-based sampling that takes advantage of

the knowledge about policies to select the events that need to

be collected. We identify the minimal sets of events needed

to construct proofs using only evidence gathered from the

cloud provider in order to demonstrate compliance of specified

system resources. When an external monitoring entity, e.g.

Monitoring-as-a-Service (MaaS), performs the sampling, the

collected evidence could also demonstrate security policy

compliance to third-party auditors.

Our contribution includes the following:

1) we introduce a security monitoring API to collect addi-

tional evidence about the user system state;

2) our sampling strategies allow evidence of compliance to

be constructed from a small set of evidence;

3) we show that our API can work with well-known

monitoring techniques, providing evidence for validating

part of the network management and security policies

defined in PCI-DSS [1].

The rest of the paper is structured as follows. Section II

presents our policy compliance framework. Section III presents

strategies for performing random policy compliance valida-

tions. Our initial evaluation is in Section IV. Section V

compares our approach against the current state of the art.

Finally, we conclude and discuss future work in Section VI.

II. FRAMEWORK FOR POLICY COMPLIANCE MONITORING

The goal of our framework is to provide cloud users the

ability of collecting evidence that supports compliance of

their systems to policies. We consider the case in which

the user’s infrastructure is provided by a Infrastructure-as-

a-Service (IaaS) provider, and we assume that the policies

specified by the user are formally represented as rules in an

event-based monitoring system (e.g., [4]). These rules identify

policy violations and are specified by indicating sequences of

(a)

!"#$%"&'()

*&+,#$-,."#)

/01)'2'#%3)

/41)&'5"&%3)
!,,6)

7,,6)8&"2$('&)

(b)
!""#$%&'()*+&$

,'-).'&+*$

/&0"-)1"2'-$,""#$

345$+(+-.6$

375$&+8'&.6$

395$:';8<)"-=+$

8&''>$

Fig. 1. (a) Current monitoring-as-a-service architecture. (b) The CSM API allows the MaaS provider to acquire evidence about the compliance of the
infrastructure and prove compliance to a third-party auditor.

events that are not expected to occur in the system. In a basic

monitoring system, system changes are represented as events

and collected in a centralized location; these are used to detect

sequences of events that violate policies. Consider a security

requirement which specifies that all active hosts should be

running an anti-virus software, unless specifically exempt.

This requirement can be validated by representing information

about active hosts, running processes, and exemptions as

events.

There are several companies (e.g., monitor.us) providing

third-party monitoring solutions (Monitoring-as-a-Service, or

MaaS), which can be used by organizations to manage and

analyze their logs. Generally, these solutions rely on acquiring

log data and other events from Syslog, routers, or monitoring

agents running on end-hosts. However, while these techniques

can increase the confidence that an organization has on its

own compliance, the information collected is subject to two

problems. The first problem arises when compliance needs

to be checked by external entities. As the event data are

generated by the organization, the auditors have no guarantee

that the data corresponds to the actual system configurations.

Second, compromised systems can manipulate events reported

to the monitoring system and hide non-compliant behaviors.

When the infrastructure runs on a cloud infrastructure, our

architecture addresses these problems by using the CSM API

to collect additional evidence of compliance.

A. Rule Definition

We define event-based rules by representing events and

rules in logic. Events are characterized by the type, set of

parameters, and two (start and end) timestamps. We write

events as type(P1, . . . , Pn)ts,te . We represent policies as rules

in Datalog¬ (Datalog with negation) extended with time con-

straints [5]. We assume the safeness of variables (all variables

appearing in the body and head of a rule need to appear at

least in a non-negated predicate) and stratified negation (a

common condition on the definition of recursion over negated

predicates). We omit ts,te if the rule is checking for a set of

events that are true at current time now > ts ∧ now < te.

Consider a policy specifying that all active machines should

run an antivirus software unless they are explicitly exempt

from the requirement. We use event activedevice(M) to

indicate that a machine M is active, and event exemptav(M)
to indicate that M is exempt from this requirement. Event

runs(M,P) indicates that a machine M is running program

P , and hash(M,P,D) indicates that the hash of the code

pages of program P running on M is D. antivirus(D) is a

long-lived event indicating that the hash D corresponds to an

anti-virus software. Using these events we define the security

requirement as follows:

violation← activedevice(M),¬runsav(M),
¬exemptav(M).

runsav(M)← runs(M,P), hash(M,P,D),
antivirus(D).

(1)

The first rule defines that the security requirements is

violated if there is an active device at current time that is

not running an antivirus software (¬runsav) and that it is

not exempt from the antivirus requirement ¬exemptav(M).
We consider a program an anti-virus software if the code of

the running program P (hash(M,P)) matches the code of a

known anti-virus software (antivirus(D)). For each policy a

set of primary resources is identified, indicating the resources

for which the policy should be verified. In this example, the

primary resource is M as we are interested in verifying the

described property for all hosts machines.

B. Architecture

Our architecture considers the case in which the organiza-

tion uses an external MaaS to store and analyze the system

logs. The CSM API, when used directly by the organization,

will be useful for evaluating potential errors in the monitoring

system but cannot be used to collect the independent informa-

tion requires for proving compliance to a third-party.

We consider four entities in our architecture: the cloud

provider, monitored organization, monitoring-as-a-service

provider, and (optionally) external auditor. We assume that

the cloud and the MaaS providers are neutral entities and

do not collude with the organization. Additionally, we as-

sume that it is hard for an attacker to compromise both

the organization and the cloud provider (or the MaaS), as

they are managed by different entities. In a typical MaaS

architecture, the organization runs its services on the cloud

provider’s infrastructure and sends event logs to the MaaS

(Step 1, Figure 1a). The MaaS provides compliance reports

and notifies the organization about any violations detected

(Step 2, Figure 1a). In this architecture, the organization

cannot perform any secondary checks on the correctness of

the reports generated by the monitoring system. Since the logs

are provided by the organization, the generated reports cannot

be used to prove its compliance to external auditors.

Our evidence-based framework adds an additional interac-

tion (Step 2-3, Figure 1b) between the MaaS provider and the

cloud provider. After receiving the logs, the MaaS can verify

the log integrity and accuracy (Step 2) through the use of the

CSM API. The cloud provider sends (Step 3) the information

about the state of the requested resource. After a small delay

added from collecting all the event data about the resource,

the MaaS confirms or disputes the trustworthiness of the logs

sent by the organization. This information is delivered to the

organization as a signed message. By collecting several pieces

of evidence over a period of time, the organization can show

partial evidence of compliance to the external auditors (Step

5, Figure 1b).

III. COLLECTING COMPLIANCE EVIDENCE

A key component of our architecture is the CSM API, which

provides access to advanced monitoring functionalities of the

cloud provider.

Cloud providers generally provide an API for monitoring

performance, load, and failures. We extend this API with meth-

ods to collect security-relevant information. However, IaaS

cloud providers often have limited knowledge about the user

systems’ security state. For example, the semantic gap [10]

introduced by virtualization or the overhead of a continuous

monitoring of network communications make it difficult to

monitor all events that are relevant to policy compliance.

To address these issues, we use the CSM API to collect a

small amount of evidence data that can be used to verify the

trustworthiness of reports generated by the monitoring system.

The CSM API is based on a “query” approach: the organiza-

tion or the MaaS requests specific information about a system

resource; the cloud provider collects the requested information

and responds to the message. Only a little persistent state is

saved on the cloud provider’s side. To provide the advanced

monitoring services at a low cost, the API is designed to incur

just small monitoring overhead.

A. Case Study: PCI-DSS Compliance

The rest of the paper is presented using a concrete case study

that considers a subset of the Payment Card Industry Data Se-

curity Standard (PCI-DSS) policies. PCI-DSS compliance is a

requirement for organizations handling credit card data for any

of the large credit card companies (i.e., Visa and Mastercard).

The policies cover security procedures, software development,

access control, and network configurations. PCI-DSS is aimed

at assessing compliance of an entire organization, but was

not designed specifically for monitoring purposes. Generally,

the organizations would define their own monitoring rules

for checking compliance. However, for the policies that are

directly related to network management, PCI-DSS provides

representative examples of the type of security requirements

that the organizations would enforce on their systems.

Because our focus is on network and system configuration

policies, we only consider requirements identified in Sections

1, 2, 5, and 6 of the PCI-DSS compliance document [1].

Information about these sections and what data is required

for validating the policies are shown in Table I.

TABLE I
ASSOCIATION BETWEEN REQUIREMENTS, NUMBER OF RULES, AND

INFORMATION TO ACQUIRE. IN PARENTHESIS WE PUT THE NUMBER OF

POLICIES WE CONSIDER RELEVANT TO MONITORING.

Description Num Evidence

1 - Install and maintain
a firewall configuration to
protect cardholder data

24(18) procedures; documentation;
firewall information;
topology; network traffic;
cardholder data.

2 - Do not use vendor-
supplied defaults for sys-
tem passwords and other
security parameters

8(8) procedures; documentation;
custom-agents; running
programs; topology;

5 - Use and regularly
update anti-virus software
or programs

3(3) documentation; custom-
agents; running program;
program integrity; network.

6 - Develop and maintain
secure systems and appli-
cations

22(2) procedures; documentation;
running program; OS iden-
tification; program integrity.

The cloud provider can collect a significant part of the

required information using three types of monitoring sys-

tems: cloud configuration information, network monitoring,

and VMI. All of these monitoring techniques have high

practicality and have implementations available for use. First,

configuration information is immediately available through the

provider API. Second, network monitoring can be performed

by implementing agents in a monitoring VM (e.g., Xen Dom0

or KVM’s Host) with technologies such as OpenVSwitch

[6] or libpcap. Third, VMI can observe the internal state

of VMs and can be implemented with technologies such as

libVMI [3]. We imagine that the cloud provider can recover

the implementation costs and small performance overheads

incurring from this advanced monitoring by charging a per-

request fee in a way consistent with the pay-per-use cloud

computing model.

TABLE II
LIST OF EVENT TYPES THAT NEED TO BE ACQUIRED FOR VALIDATING

PCI-DSS COMPLIANCE

Event Type Evidence Description

topology EC2 API Firewall configurations
and host IPs

network traffic OpenVSwitch Capturing packets for
identifying flows

cardholder data libVMI Memory analysis for
credit card patterns

running programs libVMI Memory analysis for
extracting running pro-
grams

program integrity libVMI Memory analysis for
checking program
integrity

Table II lists the monitoring techniques that we consider

in the development of the CSM API. Other monitoring tech-

niques can also be added to allow verification of additional

information.

B. Cloud Security Monitoring API

At the core of the CSM API is a set of methods that can

be used for obtaining information about system resources. As

information about resources is expressed in our model using

logic statements, each method accepts one or more resources

and returns a set of statements. The methods return a signed

response containing the submitted query, response statements,

and timestamp—this can be used to prove compliance of the

infrastructure to an auditor. With the exception of methods

returning general information about the system, the invocation

of a CSM API method requires the IDs of resources (accessible

to the cloud provider) to be specified. Queries that collect the

state of a large set of resources at once are not practical as

this would require a high workload from the cloud provider.

We summarize in Table III the monitoring techniques that

we consider in our use case. Table IV provides a connection

between the methods and the statement provided. The column

“API call” contains the name of the method and the parameters

to pass to the function. The domain of the parameters is

provided in the second column. The third column reports the

list of statements contained in the response. When a variable is

qualified with ∀, the method returns the entire list of statements

for the specified resource. For example, method evrun returns

the entire list of programs running on the given machine m
at time t. Hence, we know that for every P not appearing in

the result, the statement runs(m,P, t) is false.

We consider monitoring techniques that are transparent

for the guest VM (i.e., an organization is not aware of a

sample being taken), and we consider the sample selection

to be randomized: in this way, hosts cannot change their

configurations or state just before the information is collected.

TABLE III
EXAMPLES OF VIRTUAL MACHINE INTROSPECTION CAPABILITIES.

Capability Name Reference

List host and network
resources

evlist EC2 API [7]

Running processes evrun(M) Payne et al. [3]

Network connections evnt(M) Payne et al. [3]

Cardholder data evchd(M) Hizver et al. [8]

OS identification evid(M) Christodorescu et al. [9]

Program integrity evint(M,P) Garfinkel et al. [10]

C. Validation Process

During the validation process, the MaaS provider selects and

obtains evidence for supporting the compliance of its client

infrastructure. As the CSM API exposes only a partial view of

TABLE IV
CSM API METHODS FOR OUR USE CASE

API call Domain Response

evlist - ∀M : computer(M).
evrun(M) M : hosts ∀P : runs(M,P).
evnt(M) M : machine ∀N : connected(M,N).
evchd(M) M : hosts cardholder(M).
evint(M,D) M : hosts, D : program

signature
integrity(M,D).

the events in the system, we select evidence using a resource-

based strategy based on random sampling. This strategy uses

the partial information available through the CSM API to

prove compliance of a resource at a time t. Our strategy works

as follows. First, we select a random policy p and, for each

primary resource in the policy, a random resource m. Second,

we convert the policy p into a set of expressions called minimal

evidence set. Finally, we use the minimal evidence set to guide

the acquisition of evidence from the CSM API.

1) Minimal Evidence Set: Minimal evidence sets define

combinations of evidence that are sufficient for proving com-

pliance of a resource. For example, we consider the require-

ment 1.3.7 of PCI-DSS that requires hosts storing cardholder

data to be connected to an internal network that is segregated

from the DMZ and the public Internet. We can represent this

requirement with the following rule.

violation← cardholderdata(M),
connected(M,N),¬internal(N).

(2)

We consider the application of the policy to a specific

resource by substituting the resource name in the policy (e.g.,

M/m). A direct verification of such an expression requires

collecting evidence about each single statement in the rule

body. In the given example, we need to (1) verify whether m
contains cardholderdata, (2) find the list of networks that m
is connected with, and (3) check which networks are internal.

If this set of additional evidence can be collected, the MaaS

verify compliance to the policy and determine the presence of

violations. However, as the CSM API provides only a partial

view of the system, collecting evidence about each single

statement in a complex policy might not be possible or might

impose a large overhead.

In many cases, it is possible for a MaaS provider to

prove, by collecting very little evidence, that a resource is not

violating the selected policy. In this example, compliance for

a resource can be demonstrated by collecting evidence that

proves that m does not hold cardholder data, or that m is

only collected through the internal network. Intuitively, we

show compliance by collecting evidence about the absence

of a violation by considering the negation of a rule body.

Generally, rules are composed of several conjunctions: we can

use simple manipulations to show that negating the rule body

creates a set of negated expressions connected by OR. If any

of these expressions can be proven true, we know that the

negation of the rule is true, and hence a violation cannot exist

for the selected resource. As each OR-connected expression

contains only a portion of the original statements, its validation

only requires a partial view of the system state. Hence, it is

more likely that the CSM API is used to collect evidence for

showing compliance.

Given a rule, we define a set of expressions called minimal

evidence set. Collecting evidence for any of the expressions

in a minimal evidence set is sufficient for proving that the se-

lected resource is compliant. We generate a minimal evidence

set by considering the statements in the original rule body

¬cardholderdata(m).
∀N : ¬connected(m,N).
∀N : internal(N).
∀N : ¬(connected(m,N) ∧ ¬internal(N)).
∀N : ¬(cardholderdata(m)∧ connected(m,N)).
∀N : ¬(cardholderdata(m)∧ connected(m,N) ∧ ¬internal(N)).

(3)

Fig. 2. Minimal evidence set for an example policy.

that can be validated using the CSM API. This algorithm is

described in Algorithm 1, and how it is used in our example

policy is shown in Figure 2.

The set includes both simple negated statements (e.g.,

¬cardholderdata(m)) and the negation of statement groups

(e.g., ¬(connected(m,N)∧¬internal(N)). We include nega-

tions of statement groups to increase the possibility of collect-

ing a complete set of evidence. Free variables in the expres-

sions represent universally quantified variables. It is often im-

possible to collect evidence for such a general statement. For

example, proving the expression internal(N) would require

showing evidence that all networks in the system are classified

as “internal.” On the other hand, by considering expressions

obtained through negating statement groups, we can reduce

the scope of the universal quantification. In our example,

the expression ∀N : ¬(connected(m,N) ∧ ¬internal(N))
requires collecting evidence that shows, for all networks,

there is no network connected to m, which is not internal.

When looking at the conjunctions of statements, we only

consider semantically meaningful groups by taking the subsets

that are “safe” (i.e., variables appear in at least one non-

negated statement) and semantically connected (i.e., state-

ments share variables). Verification of statements which do

not share variables (e.g., verifying the group of two statements

cardholderdata(m) ∧ internal(N)) would not provide any

additional information compared to when each statement is

verified independently.

2) Verification: We use the minimal evidence set to select

the evidence that needs to be collected. Each expression in

the set is considered, and the evidence is gathered using

the method listed in Table IV. In the given example, the

MaaS randomly selects a resource m from the set returned

from evlist. We can use evchd(m) to verify if m stores

cardholderdata. If the API returns a values specifying that m
does not contain such data, then we can immediately show

that the rule cannot be true at the current time for resource

m. This response can be stored, signed, and returned to the

organization. Otherwise, the analysis for other expressions in

the minimal evidence set continues.

For a given resource, the verification has three possible

outcomes. First, the evidence supports a minimal evidence set

expressions, indicating that a proof of compliance has been

found. Second, the evidence contradicts information provided

by the user. If the inconsistency remains after a timeout,

during which all messages have been received, an evidence

for a possible security problem has been found. Third, the

Algorithm 1 Determine minimal evidence sets

var(P) : returns the set of variables in P

P(A) : power set obtained by taking each predicate of A

Rb = rule body

MES = φ minimal evidence set

Rv = φ
for all s ∈ Rb that are CSM-verifiable do

MES = MES ∪ ¬s
Rv = Rv ∪ s

end for

ES = P(Rv)
for all ei ∈ ES do

if ei is safe, connected then

MES = MES ∪ ¬ei
end if

end for

TABLE V
SUMMARY OF THE CAPABILITIES OF THE CSM API TO VALIDATE

PCI-DSS POLICIES.

Section Total Monito- Com- Par- CSM/
rable plete tial Monitorable

1 24 18 11 7 100%

2 8 8 1 2 37.5%

5 3 3 0 2 33.3%

6 22 2 1 1 100%

evidence is consistent with the user information but insufficient

to prove any minimal evidence set expression. Here, the users

are notified to perform a detailed inspection of the resource.

The process of sampling the compliance of a resource is

repeated multiple times by selecting different resources. The

random selection ensures that the organization does not know

which resources will be selected. If the evidence collected

through this randomized process does not contradict the orga-

nization’s own monitoring information, it can help validate the

authenticity of the monitoring data and increase the confidence

in the overall state of compliance.

IV. INITIAL EVALUATION

Our initial evaluation investigates the potential effectiveness

of the proposed technique to verify PCI-DSS compliance.

Looking through the PCI-DSS documents, we identified the

policies that could be validated using the CSM API.

Table V summarizes our analysis. We consider PCI-DSS

policies that involve network management and identify subsets

of rules that our evaluation focuses on. As PCI-DSS policies

are defined for manual auditing, several policies are not ex-

pressed in the way suitable for direct monitoring. For example,

policy 1.1.1 requires the existence of a formal process for

testing and approving changes in firewalls, and such a policy

cannot be verified by any IT monitoring system. We define

policies as monitorable if an automated system is able to

gather the required information.

As the next step, we analyzed the type of information

required for validating such policies. We considered the cur-

rent literature in virtual machine introspection and identified

techniques that can gather such information. These techniques

are listed in Section III-A. We identified (1) a set of complete

policies for which the CSM API is capable of gathering

complete information required to check compliance; and (2) a

set of partial policies for which it will only collect partial

information required to check compliance, indicating that

external data is required for completing the evaluation. The

other monitorable policies cannot be validated through CMS

API as they require monitoring through specialized software

(e.g., agents). For example, software agents can check the use

of default passwords (policy 2.1.1) or test the state of anti-

virus software (policy 5.5.1). The CSM API does not provide

access to information obtained through such means. The last

column shows the ratio between the policies we can validate

using CSM and the monitorable policies: both complete and

partial policies are considered as the resource-based sampling

can collect compliance evidence for both policy types. Our

analysis shows that a significant portion of the policies can be

validated using our framework.

V. RELATED WORK

Bleikertz et al. [11] introduce an approach for verifying the

correctness of a cloud infrastructure deployment. The authors

acquire information about the user’s configurations from the

cloud API and use model checking and theorem proving for

verifying the correctness of the deployment. While such an

approach permits the verification of static and slowly changing

properties, its application to frequently changing states such as

network connections or running programs is challenging. Our

framework complements user-managed monitoring systems

and uses sampling to reduce the load on cloud provider.

Previous research analyzed techniques for preserving log

integrity through digital signatures and encryption [12], [13].

While such techniques provide an effective protection against

attacks aimed at modifying the stored logs, they cannot prevent

false information being injected into the monitoring system by

compromised applications or machines. To provide stronger

guarantees on the logs being generated, numerous researchers

[14]–[16] have explored the use of host VMs (e.g. Dom0

in Xen) or secure, isolated logging VMs that log the I/O

responses and requests independent to the guest VMs. A

compromised VM, without also compromising the host VM

or isolated logging VM, cannot bypass this type of logging

mechanism. These approaches, however, often do not address

the ‘semantic gap’ problem and generate a very large amount

of log data, making it difficult to analyze them efficiently. In

contrast, our approach only requires a small amount of data

to be sampled and analyzed.

VI. CONCLUSION AND FUTURE WORK

We introduce a framework for validating integrity/accuracy

of a large volume of logs in a policy-based monitoring system

using a small sample of evidence data. Our CSM API enables

organizations to acquire additional evidence about the com-

pliance of their systems and resources. The VMI techniques

used by the CSM API only provide access to a limited view

of the system’s state. We introduce a resource-based sampling

strategy that can select evidence to show compliance of a

resource out of such a partial view.

Our future work will address the issues in implementing

the CSM API in an OpenStack testbed, and will quantify the

reduction in the amount of evidence required to prove compli-

ance with PCI-DSS policies due to the minimal evidence set

approach. Additionally, Platform-as-a-Service cloud providers

have access to high-level semantic information about the users’

systems. Future work should extend the CSM API to take

advantage of such information.

ACKNOWLEDGMENT

This material is based on research sponsored by the Air Force

Research Laboratory and the Air Force Office of Scientific Research,

under agreement number FA8750-11-2-0084. The U.S. Government

is authorized to reproduce and distribute reprints for Governmental

purposes notwithstanding any copyright notation thereon. This work

was partially supported by a grant of The Boeing Company.

REFERENCES

[1] Payment Card Industry Security Standards Council, “Payment Card
Industry (PCI) Data Security Standard,” Payment Card Industry Security
Standards Council, Tech. Rep., 2010.

[2] United State Government, “Federal Information Security
Management Act (FISMA),” 2002. [Online]. Available:
http://csrc.nist.gov/groups/SMA/fisma/index.html

[3] B. Payne, M. de Carbone, and W. Lee, “Secure and flexible monitoring
of virtual machines,” ACSAC 2007, pp. 385–397, 2007.

[4] R. H. Campbell and M. Montanari, “Multi-Aspect Security Configura-
tion Assessment,” in ACM Workshop on Assurable & Usable Security

Configuration (SafeConfig), 2009.
[5] K. Walzer, T. Breddin, and M. Groch, “Relative temporal constraints in

the rete algorithm for complex event detection,” in DEBS ’08, 2008.
[6] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,

“Extending networking into the virtualization layer,” Proc. HotNets

(October 2009), 2009.
[7] Amazon Web Services, “Elastic Compute Cloud (EC2),” 2011. [Online].

Available: http://aws.amazon.com/ec2
[8] J. Hizver and T.-c. Chiueh, “Automated Discovery of Credit Card

Data Flow for PCI DSS Compliance,” 2011 IEEE 30th International

Symposium on Reliable Distributed Systems, pp. 51–58, Oct. 2011.
[9] M. Christodorescu, R. Sailer, D. Schales, D. Sgandurra, and D. Zamboni,

“Cloud security is not (just) virtualization security: a short paper,” in
Proceedings of the 2009 ACM workshop on Cloud computing security.
ACM, 2009, pp. 97–102.

[10] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in NDSS Symposium, 2003.

[11] S. Bleikertz, T. Groß, and S. Mödersheim, “Automated Verification of
Virtualized Infrastructures,” in Proceedings of the 3rd ACM workshop

on Cloud computing security workshop. ACM, 2011, pp. 47–58.
[12] Wensheng Xu and David Chadwick and Sassa Otenko, “A PKI Based

Secure Audit Web Server,” in Communication, Network, and Information

Security. ACTA Press, 2005.
[13] V. Stathopoulos, P. Kotzanikolaou, and E. Magkos, “A framework for

secure and verifiable logging in public communication networks,” in
CRITIS, ser. LNCS, vol. 4347. Springer, 2006, pp. 273–284.

[14] Sujata Garera and Aviel D. Rubin, “An independent audit framework
for software dependent voting systems,” in CCS ’07. New York, NY,
USA: ACM, 2007, pp. 256–265.

[15] J. H. Huh and A. Martin, “Trusted logging for grid computing,” in
Trusted Infrastructure Technologies Conference, 2008. APTC ’08. Third

Asia-Pacific. IEEE Computer Society Press, October 2008, pp. 30–42.
[16] N. A. Quynh and Y. Takefuji, “A central and secured logging data

solution for xen virtual machine,” in 24th IASTED International Multi-

Conference Parallel and Distributed Computing Networks, Innsbruck,
Austria, February 2006.

