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Abstract—The future airport is predicted to be a highly net-
centric system-of-systems with advanced networking and 
wireless technology to accommodate the “eEnabled 
aircraft,” enhanced surface area operations, as well as 
growing business and societal demands. In this paper, we 
present a classification of security policies that need to be 
enforced in such modern airport systems. We propose a 
distributed architecture for policy-compliance monitoring 
that enables runtime verification of compliance in the multi-
organization environments typical of large-scale 
infrastructure systems. Compared to current solutions, our 
monitoring architecture allows each organization to acquire 
independently information about the state of the 
infrastructure while respecting integrity, confidentiality, and 
separation-of-duty constraints that arise because of the 
interaction between parts of the infrastructure managed by 
different organizations12. 

TABLE OF CONTENTS 

1. INTRODUCTION ................................................................. 1	  
2. RELATED WORK ............................................................... 2	  
3. E-ENABLED FLEETS AND AIRPORTS ................................ 2	  
4. FORMALIZATION OF POLICIES ........................................ 4	  
5. MULTI-ORGANIZATION POLICY COMPLIANCE ................ 6	  
6. EVALUATION ..................................................................... 8	  
7. CONCLUSIONS ................................................................... 9	  
REFERENCES ......................................................................... 9	  
APPENDIX A: EXAMPLES OF SECURITY POLICIES ............ 10	  
BIOGRAPHY ........................................................................ 11	  
ACKNOWLEDGEMENTS ...................................................... 11	  
 

1. INTRODUCTION 
A recent vision in commercial aviation is the “e-Enabled 
aircraft” that operates as an intelligent, mobile node in the 
Internet [1]. Safety, security, environmental, efficiency and 
economic benefits are provided to airlines, crew, ground 
personnel, passengers and business stakeholders. The 
performance of future eEnabled fleets, however, depends on 
the correct operation of network services provided by 
airport infrastructure [2]. As the complexity of airport 
infrastructure increases and changes become more frequent, 
manual control and operation become ineffective. 
Unintended or malicious changes in the configuration of a 
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single system could introduce errors in the overall 
infrastructure configuration that might remain invisible and 
degrade or disrupt operations (e.g., [3]). Hence, for 
preserving performance gains of e-Enabling, such errors 
must be timely detected to prevent systems from operating 
in insecure or inefficient states. 

In this paper, we focus on the problem of monitoring airport 
infrastructure operations to detect policy violations. Policies 
provide an efficient way to manage the operation of the 
airport infrastructure: each policy describes a portion of the 
correct operation state. When the system is operating 
outside the states specified by the policy, the system is 
potentially exposed to security problems and inefficiencies 
that should be corrected quickly. For example, a policy may 
mandate that aircraft must land (i.e., weight-on-wheels) and 
then access a remote airline system on the Internet for 
software update. If the aircraft accesses airline system 
before landing, then unwarranted aircraft safety concerns 
emerge about potentially malicious software updates or 
potential exposure of flight-critical systems to unauthorized 
external access. On the other hand, if the aircraft does not 
access the airline system even after landing, the error 
condition may create an undesirable delay in gate turn-
around time for software refresh. Another policy may 
specify that maintenance devices must be disconnected from 
Internet when accessing airplane systems to avoid acting as 
unintentional stepping-stones for threats. While a dedicated 
monitoring infrastructure could be developed for each 
policy, such an approach may prove expensive and not 
scalable given size and frequency of policy modifications. 

The proposed online policy monitoring system for airport 
infrastructure addresses the scalability problem by providing 
a general framework for acquiring information about 
infrastructure state at runtime and checking if the current 
situation is in violation of policies that govern 
infrastructure. However, since systems in airport 
infrastructure are typically owned and controlled by 
multiple organizations, such a monitoring system is faced 
with several challenges in the design of the architecture and 
in the selection of the devices to use for acquiring 
information. First, each organization must enforce policies 
independently. Second, the validation of a policy might 
require acquiring information about parts of the 
infrastructure managed by a different organization. This 
creates integrity and confidentiality problems, as business 
conflicts between competing organizations might create 
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reticence in sharing information or in relying on external 
information for analysis. Third, to protect against sabotage, 
malicious employees, and device errors, critical information 
for the analysis should be acquired redundantly and in ways 
that do not allow a single entity to corrupt all information 
sources (i.e., separation-of-duty constraints).  

The contribution of this paper is two-fold. First, we present 
a classification of security policies for monitoring 
interactions between e-Enabled fleets, maintenance 
personnel and airport infrastructure. To our best knowledge, 
it is the first paper to establish the security policy 
framework for future eEnabled fleets and airports. Second, 
we present a system architecture that allows each 
organization to monitor the infrastructure independently. 
Our architecture is based on an algorithm that enables each 
organization to collect efficiently state information while 
respecting integrity, confidentiality, and separation-of-duty 
constraints that need to be enforced for the deployment of 
such monitoring in a multi-organization scenario. 

The rest of the paper is organized as follows. Section 2 
provides an overview of related work in the area of policy 
verification. Section 3 describes the infrastructure of 
modern airports considered and the type of policies that 
need to be defined in such environments. Section 4 provides 
a framework for formalizing such policies. Section 5 
addresses the problem of multi-organization validation of 
policies. Section 6 describes our experimental results, and 
Section 7 concludes our work. 

2. RELATED WORK 
Airport environment policy definitions have encompassed 
rules that regulate the use of runways by different types of 
aircraft [4]. In this work we provide a more general 
framework for the definition of policies that integrate the 
network infrastructure of the airport.  

The problem of acquiring information about network 
infrastructure has been previously addressed by systems 
such as NetQuery [5] and standards such as WBEM [6]. 
However, none of the previous approaches is able to 
automatically deal with complex multi-organization 
constraints such as replication and separation of duty.  

Other work addressed the problem of detecting potential 
security problems present in a system configuration. Nessus 
[7], TVA [8], and Mulval [9] are systems proposed for 
detecting the security consequences of erroneous 
configuration of infrastructure. The focus of this paper is on 
how the information about the state of the infrastructure can 
be acquired so that it can be analyzed with the use of such 
techniques.  

3. E-ENABLED FLEETS AND AIRPORTS 
The network infrastructure of airports supports several 
applications, from interconnecting devices at check-in desks 
and gates to supporting the communication between aircraft 
and airline systems. In this work, we focus on the 
interactions between e-Enabled fleets, maintenance 
personnel, and airport infrastructure services. Figure 1 
provides an abstract view of the system architecture that we 
consider representative of the e-Enabled airline system 

 

Figure 1: Architecture of the infrastructure of a future airport system. 
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architecture at airports [10]. To support the maintenance of 
the e-Enabled fleet, four classes of devices interact in the 
airport infrastructure: 

(1) Aircraft Hardware Maintenance: Portable devices 
located on the tarmac that access aircraft systems to 
perform net-enabled operations (e.g., hardware 
inspection/repair, sensor readings). These typically 
belong to organizations that are leased or owned by 
airlines. 

(2) Connectivity: Fixed wireless/wired network access 
points (e.g., WiFi, WiMAX, cellular, and power line) 
that interconnect e-Enabled aircraft with off-board 
systems on the Internet. These typically are owned by 
third party service providers.  

(3) Airline Maintenance Applications: Portable devices 
that are used in the cabin and gate to communicate 
directly with aircraft systems for airline maintenance 
applications (e.g., software update, cabin access). 
These are typically owned/leased by the airlines. 

(4) Tarmac Security Monitoring: Physical security 
services provided by CCTV camera, automatic door 
locks, and emergency devices. These are typically 
owned by the airport authority.  

For supporting maintenance, we consider crew devices that 
(i) maintain the aircraft RFID-tagged hardware; (ii) manage 
software, and multimedia; and (iii) manage gates and 
control access to the aircraft cabins. Additionally, our 
system model considers other IT infrastructure that interacts 
with these devices. We include the interfaces with airline 
back-office servers that reside remotely and provide 
information, software and multimedia for the airline fleet.  
Security monitoring includes all physical security devices 
such as cameras or devices that enforce crew access control 
in restricted areas of / around the aircraft. Such devices 
communicate using the network infrastructure provided by 
the airport. 

The online validation of compliance requires a device to 
share information about its state with the rest of the 
infrastructure. We assume that each device allows access to 
a portion of the system’s state that it can “observe”, i.e., that 
it can acquire because of its function. In this paper we focus 
on which information should be shared and not on how the 
information is shared by each device, as there are existing 
technologies through which devices can share information 
about the state. Network management systems, such as 
WBEM [6], allow information about the current state of the 
device to be queried from the network. Alternatively, secure 
introspection techniques [11, 12] can be used to monitor the 
state of a device in a way that is resilient to compromises. 
Moreover, it is possible for developers to integrate these 
capabilities in their software and allow authorized third 
party to obtain information about the system’s state through 
application-dependent protocols.  

We consider an adversary whose objective is lowering the 
performance gains of the e-Enabled aircrafts and airport 
systems by exploiting vulnerabilities in the policy 
monitoring system. The adversary attempts to provide false 
state information to the policy monitoring system so that 
policy violations are not detected (i.e., false negative), or 
false policy violation notifications are generated (i.e., false 
positive). The adversary can compromise a limited number 
of devices in the infrastructure, i.e., using a set of valid 
credentials (e.g., malicious insider), or by exploiting 
vulnerabilities in the devices. We assume that the adversary 
is not able to compromise a majority of devices that are part 
of the same redundant set used for policy validation (i.e., the 
same vulnerability is not present on the majority of devices 
that provide a critical piece of information about the state). 
For non-critical policies, however, we assume devices report 
their state information correctly, thereby considering threats 
only from unintentional misconfigurations and failures.  

3.1. SECURITY POLICIES FOR E-ENABLING  
The interactions between airport infrastructure, maintenance 
devices, and e-Enabled aircraft fleets create a complex 
system composed of hundreds of elements. This 
infrastructure needs to operate correctly to provide the 
services that maintain the airport and keep the aircraft 
operational. To enable a synergetic interaction between the 
different parts and to establish security requirements, 
organizations use security policies that define the correct 
configuration of each component and define the actions that 
are permitted by each user or device.  While compliance to 
policies cannot guarantee perfect security, security policies 
provide a basic level of assurance against attacks that would 
be avoidable had proper security measures been taken. 

For example, a security policy for e-Enabled aircraft might 
mandate that they must communicate with the ground 
systems to check for new updates, but only upon landing. 
Not performing this check before landing could be 
potentially a sign of other malfunctioning. It could 
potentially introduce malicious updates or delay the 
application of important updates. Similarly, a security 
policy might specify that maintenance devices be authorized 
to access the aircraft systems only if physically located on 
the runway near the plane. 

In the definition of security policies for airports, we can 
classify policies in several classes based on the objective as 
follows: 

(1) Safety Related: These are used to ensure safe and 
regulated operation of aircraft. 

(2) Access Control Related: These are used to prevent 
unauthorized crew and device access to aircraft 
systems. 

(3) Business Related: These are used to securely minimize 
operational costs of aircraft and ensure quality of 
network connections. 



 4 

(4) Airport Operation Related: These are used to securely 
enable efficient allocation and ensure 24/7 availability 
of resources at the airport. 

Policies can be defined on each type of service provided by 
aircraft or ground systems.  

The definition of proper policies for the operation of the 
infrastructure is critically important. Even if policies are 
currently defined by several organizations for different parts 
of the airport infrastructure, policies are yet to be fully 
defined for regulating secure interactions between airport 
ground systems and e-Enabled aircraft.  

Appendix A provides several examples the type of policies 
that need to be defined in each policy class. Note that 
several of these requirements are theoretical and formulated 
for use only in our research. For the rest of the paper we 
focus on three examples as representative policies for the 
different policy classes: 
 
(2) Aircraft accessing a “ground-only” airline application 
must be in weight-on-wheels condition. 

(5) Maintenance device must be disconnected from the 
Internet when accessing aircraft systems. 

(11) Aircraft must automatically choose the most cost-
effective wireless data link available that satisfies the 
minimum bandwidth requirement. 

Infrastructure systems have mechanisms for enforcing the 
conditions specified in the policies. However, for multiple 
reasons the enforcement of policies might fail: software 
errors, hardware failures, or incorrect configurations might 
allow the system to reach a state that violates the policy. In 
this case, it is important to have a system that is able to 
detect such violations and notify the situation for 
rectification. Additionally, reliable logging of violations is 
essential to provide evidence of compliance to policies. To 
address these issues, we develop automatic methods for 
identifying when the infrastructure operates outside the 
conditions specified by the policy, while the process of 
acquiring information about the infrastructure state respects 
the confidentiality and integrity requirements posed by each 
organization.  

4. FORMALIZATION OF POLICIES 
Automatic detection of policy violations is impossible 
without knowing exactly which situations are considered 
policy compliant and which are not. To specify policies 
without ambiguities, it is necessary to express them in a 
formal language. Given its flexibility and expressiveness, 
we use the Datalog language [13]. This language has been 
used in previous work for the specification of access control 
policies [14] and security of network infrastructure [9]. In 
particular, we represent the state of the system using the 
RDF language [15] and we represent policies using 
inference rules [16].  

Using RDF, each entity in the system is identified by a 
unique string called URI. For example, we identify the first 
runway of the SEATAC airport using 
http://www.portseattle.org/seatac/run1. Note that the URI is 
interpreted as a string and it is not required to identify an 
actual webpage. For simplifying notation in the rest of the 
paper we represent resources with strings starting with a 
lower case letter. The runway of the example is identified 
with seatac_run1. Resources have a type that is organized in 
a class hierarchy. The state of the system is represented as a 
set of statements. Each statement represents a “fact” that it 
is true in the state of the system and it is expressed as a 3-
tuple. For example, we can represent the fact that an aircraft 
landed on runway 1 using the notation (aircraft1, landed, 
seatac_run1). In this statement, the first element (aircraft1) 
is a resource and represents the subject of the statement (in 
this case the tail number that identifies an aircraft); the last 
element (seatac_run1) is a resource and it is called object of 
the statement. The second element (landed) is called 
predicate and represents the type of relation between the 
subject and the object (in this case that the aircraft aircraft1 
touched ground on runway seatac_run1). Unique URI 
strings also identify predicates. A timestamp is associated to 
each statement to identify the time at which the statement is 
generated. 

Policies are expressed as rules. A policy can be interpreted 
as IF <condition> THEN <consequence>. The condition is 
called rule body, and the consequence is called rule head 
and it is written as <body> à <head>. The body and the 
head of the rule are composed of statement patterns. A 
statement pattern is a 3-tuple similar to a statement, but it 
can have variables in the subject and object position. 
Variables are identified with an uppercase letter. For 
example, (A, landed, seatac_run1) is a statement pattern. A 
statement pattern can match a statement if there is a 
substitution of variables that make the two statement equals. 
In our example, the substitution A/aircraft1 makes the 
statement pattern equals to the statement (aircraft1, landed, 
seatac_run1). 

The body is composed of a conjunction of statements, while 
the head is a single statement. For example, policy (17), 
example 2 can be encoded as (A, landed, seatac_run2), (A, 
useNetwork, WiMAX) à (A, violates, policy17). 

4.1. EXAMPLES OF FORMAL POLICIES  
In order to be able to formalize policies we need to define a 
vocabulary of resource classes and predicates for expressing 
the state of the system. This vocabulary is called an 
ontology. We define the resource types airport, runway, 
application, network, and maintenance_device. We also 
define the special resource internet to represent the public 
Internet network, and the resource ground-only to indicate 
that application should be accessed only when in weight-on-
wheel status. 
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We define a set of predicates that describe the relation 
between resources. The predicate type (defined by the RDF 
standard) specifies that a particular resource belongs to a 
class. The predicate violation specifies that a resource is 
violating a policy. The predicate part_of describes that a 
resource is part of a larger resource. For example, we 
identify that an application p1 is managed by the airline al1 
using the statement (p1, part_of, al1).  

We define predicates that are specific to the case of airports. 
In policy (2), the predicate landed specifies that the aircraft 
have weight-on-wheels on a runway. In policy (11), we 
define a set of predicates that provide information about the 
state of the network interconnections. We define the 
predicate airplane_min_bw, which indicates the minimum 
bandwidth requirement of the plane (collected from 
information about the current applications running on the 
aircraft). Similarly, we define the predicate 
net_available_bw that define the bandwidth available in a 
wireless network. The predicate cost identifies the cost of 
using a particular wireless network. The encoding of the 
rules in Datalog is shown in the first two columns of 
Table 1.  

4.2. RUNTIME VALIDATION OF POLICIES 
The verification of policies requires aggregating information 
about the state of the system. Once information is collected, 
we check if the overall state triggers policy violations. 

In our architecture, the monitoring software running on the 
device can be configured to send messages that contain 
updates about the device state every time that there is a state 
change. For example, when the aircraft aircraft1 lands, a 
device s installed on the aircraft can send a message to 
notify that the state of the airplane changed. This message 
contains the statement (aircraft1, landed, seatac_run1). The 
last column of Table 1 shows the devices providing the 
different parts of the information about the policy. As 
multiple organizations can verify independently the policies, 
each device might need to send its state update information 
to different entities. Section 5 describes an algorithm on 
device selection by each organization, in order to determine 
the state of the infrastructure relevant to policies. 

Policies can also be used to define complex concepts from 
information about the system. For example, we use two 
rules in policy (5) to define the concept of “connected to 
Internet”. We say that if a device D1 that can receive 
messages from another device D2, then D1 is “connected” to 

Policy RDF Rule Example of Sources 

(2) Aircraft accessing a 
“ground-only” airline 
application must be in 
weight-on-wheels 
condition. 

(A, type, aircraft), (P, type, application), 
(AL, type, airline), (R, type, runway), 

(A, logged_on, P), (P, part_of AL), (P, apptype, ground-
only), ¬(A, landed, R) à (A, violation, policy2) 

aircraft aircraft1: (aircraft1, 
landed, *) 

airline airlineD: (*, partof, 
airlineD), (*, logged_on, P), 
(P, type  

(5) Maintenance device 
must be disconnected 
from Internet when 
accessing airplane 
system 

(D, type, maintainance_device), (A, type, aircraft), (N, 
type, network), (D1, type, device), (D2, type, device) 

(D, connected_to, internet), (D, connected_to, N), (N, 
partof, A) à (D, violation, policy5) 

(D1, rec_from, D2) à (D1, connected_to, D2) 
(D1, connected_to, D2), (D2, connected_to, internet)  
à (D1, connected_to, internet) 

maintainance_device dev1: 
(dev1, connected_to, *) 

aircraft aircraft1: (*, partof, 
aircraft1) 

(11) Airplane must 
automatically choose 
the cheapest available 
wireless data link that 
satisfies the minimum 
bandwidth requirement 

(A, type, aircraft), (N, type, network), (M, type, network), 
(AIR, type, airport), (SW, type, application), 

(A, connected_to, N), (N, partof, AIR), 
(A, airplane_min_bw, MINBW), (N, cost, NC), (A, inrange, 
M), (M, partof, AIR), (M, net_available_bw, AVMBW), (M, 
cost, MC), (M != N), (MC < NC)à (A, violation, policy11) 

aircraft aircraft1: (aircraft1, 
connected_to, *), (aircraft1, 
airplane_min_bw, *), 
(aircraft1, inrange, *) 

airport seatac: (N, partof, 
seatac), (N, cost, *), (N, 
net_available_vw, *) 

Table 1: Formal representation of three airport policies. The column sources contains statement patterns that 
summarize the set of statements generated by each device. 
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D2. Also, we define that the connectivity is transitive by 
saying that if a device D1 is connected to a device D2 that is 
connected to the Internet, then device D1 is considered 
connected to the Internet as well. Using this rule, we can 
detect complex indirect interconnections to the public 
Internet network. 

Often, multiple devices generate the same piece of 
information. In policy (2), the information about the weight-
on-wheel condition of the aircraft may be provided both by 
aircraft systems and by the ground radar of the airports. Our 
mapping algorithm takes advantage of these redundancies to 
enable the application of separation-of-duty constraints and 
redundant validation in the monitoring process. 

5. MULTI-ORGANIZATION POLICY COMPLIANCE 
The detection of policy violations in airport systems is 
complicated by the need of preserving the integrity and 
confidentiality of information about the system’s state 
across the different organizations that manage the airport 
infrastructure. 

 Confidentiality problems arise because of the nature of the 
collaboration between organizations in large infrastructures. 
Often, competing organizations are required to interact to 
guarantee compliance to government regulations. However, 
sharing information about the state of the system might 
reveal to the competitor information about the 
organization’s structure. For this reason, an organization 
might maintain confidential part of the state of the system to 
other organizations. 

Integrity problems arise in the same context when there is 
limited trust between organizations. Information used for 
the auditing of policies that are considered reliable for an 
organization might not be considered trustworthy for 
another. An organization might want to protect itself against 
misuse by third party organizations, and hence auditing 
should not be based on potentially tainted information 
coming from external organizations. 

Additionally, redundancy and separation-of-duty can be 
imposed as additional integrity constraints to protect against 
compromises of sensors by an attacker or by a malicious 
insider. When these constraints are in place, information for 
the validation of policies is acquired from multiple 
independent sensors. All these sensors provide information 
about the same portion of the state of the system. Using 
such redundant information, the correct state can be 
reconstructed even if a small number (i.e., the minority) of 
sensors are compromised.  

It is important to assure that the sensors from which 
information is acquired are “independent”. Malicious 
insiders can use valid credential to take control of sensors. If 
a set of valid credential is compromised, all sensors 
controlled using such authorization can be compromised. 
Separation-of-duty constraints are a special type of 

redundancy constraints that makes this type of attack harder: 
they specify that the set of sensors providing the redundant 
information for the validation of the policy should not be 
controlled using the same credential.  

Our system provides automated methods for mapping the 
policies audited by each organization to the sensors used for 
acquiring the information needed in the evaluation of the 
policy. 

The architecture of the system is shown in Figure 2. Policies 
are verified at runtime by machines that integrate the 
information about the state. These machines are called 
verifiers. All devices that generate information that it is used 
for the evaluation of a policy are called sensors (i.e., they 
“sense” a portion of the system’s state). Each organization 
independently manages one or more verifiers and it can 
select a set of policies to be validated on each of them. 
Organizations can place verifiers in multiple areas of the 
network to isolate them from direct attacks and provide 
redundancy to the policy validation process. Given this 
policy assignment, our system maps sensors to verifiers to 
assure that each verifier receives information to validate 
policies in a way that satisfies the organization’s 
requirements about confidentiality, integrity, and separation-
of-duty. 

Confidentiality, integrity, and separation-of-duty 
requirements are formally specified as meta-policies. Meta-
policies are constraints specified on how the information for 
validating policies is acquired from the system. 
Confidentiality meta-policies are specified by organizations 
and specify which information generated by sensors should 
not be shared with other organizations. Integrity meta-
policies are specified for each organization and for each 
statement pattern in a policy. Using an integrity meta-
policy, an organization specifies the set of organizations and 
sensors that are trusted for the policy verification. 

Type Meta-policy Condition 

C (aircraft1, 
airlineD) 

Information about the state 
of the aircraft aircraft1 
cannot be forward to a 
competing airlines  

I (5, 
connected_to, 
contractorA) 

ContratorA is not trusted to 
provide the information 
about which networks are 
used by its devices 

S (1, * landed *, 
3, true) 

Statements (*, landed, *) of 
policy 1 need to be acquired 
form three independent 
sensors 

Table 2: Examples of confidentiality (C), integrity (I), 
and separation-of-duty (S) policies. 



 7 

Separation-of-duty policies specify that certain statements 
need to be confirmed using redundant and independent 
sources. Table 2 shows an example of these types of 
policies. 

5.1. MAPPING MODEL 
We represent a source device as a tuple sj = (Oi, Ui, Si, Ci) 
where Oi is the organization that manages the sensors, Ui the 
set of users authorized to manage the sensor, Si is the set of 
statements about the state that can be potentially generated 
by the device, and Ci is a function Ci : E à N that 
represents a cost of sending information to an organization 
E.  

The union of all the data coming from the sensors is all the 
information required for performing the policy validation. 
At every instant in time t, only a subset Si’(t) ⊂ Si of 
statement is true for a sensor i. For a system composed of n 
sensors, the union of all statements generated at time t by 
the sensors represents the complete state S(t) of the 
infrastructure at time t (i.e., S(t) = ∪ Si’(t) with i=1,…, n). 
To validate policies, we create a knowledge base KB(t) that 
integrates the state S(t) and the policies. We use inference to 
check if it is possible to use the rules to infer statements that 
indicate policy violations from the state S(t). 

When rules are distributed across verifiers, it is not 
necessary to recreate the entire state at each of them. Each 
verifier needs to acquire the portion of the state that it is 
used by the policies assigned to it. For the purpose of 
assignment, we represent a policy pi as the set of all 
potential statements Sp that can match any of the statement 
patterns of pi. For example, in a system with two devices d1 
and d2 that can have an attribute state with values on and 
off, the policy (DA state S, DB state S, DA != DB, à fail) has 
Sp = {d1 state on, d1 state off, d2 state on, d2 state off}.  

A verifier is represented as a couple vi = (O, P) where O is 
the organization managing the verifier, and P is a set of 
policies assigned to the verifier.  

Confidentiality meta-policies are defined as access control 
tuples (S, O), where S is a sensor and O an organization. If a 
tuple (si, oj) is defined in the system, then the data generated 
by si can be sent to the organization oj. 

Integrity policies are defined as access control tuples (P, S, 
O). If a tuple (pi, si, oj) is present in the system then the 
policy pi can use data generated by sensors managed by oj as 
information for the statement si. 

Redundancy and separation of duty policies are defined as 
tuples (P, S, R, D) where P is a policy, S a set of statements, 
R the redundancy with which these statements need to be 
validated, and D is true if separation of duty is required, 
false otherwise.  

5.2. SENSOR-VERIFIER MAPPING 
The sensor-verifier mapping associates each sensor with one 
or more verifiers that require its state information for the 
validation of policies. As multiple devices can provide the 
same information about the state, and policy validation 
needs to satisfy complex requirements, obtaining the least-
cost mapping is not trivial. 

Without considering meta-policies, a verifier needs to 
communicate with the least-cost subset of the available 
sensors that provide all statements required by the policies 
managed by it. Formally, if Pi is the set of statements 
required by policy pi, and if a verifier is managing the 
policies p1,…,pn, then the set of statements required by the 
verifier is Sv = ∪i=1..n Pi. Each sensor provides a subset of 
statements Sj and has a cost of communicating the verifier 

 

 
 

Figure 2: Example of the association between sensors and verifiers in a multi-organization online policy 
monitoring system. Different organizations manage independent verifiers, which acquire information from 

devices (sensors) under the administrative control of other organizations 
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cj. The goal of the sensor-verifier mapping is to find the 
minimum cost subset of sensors that generate all statements 
Sv required by the verifier. In this form, the problem is NP-
complete and the proof is based on a simple mapping of the 
minimum cover set problem [17] to instances of our 
problem without meta-policies.  

We use the Chvatal [17] heuristic for the minimum cover set 
problem as a base for our mapping algorithm. This heuristic 
selects a set of sensors that minimizes the cost of acquiring 
all information required by the policies. However, our 
mapping requires taking into account meta-policies as 
additional constraints. Confidentiality and integrity 
constraints require certain sensors not to be used. 
Separation-of-duty constraints specify that, for a specific 
subset of the statements, the mapping needs to include 
multiple sensors that generate such statements.  

To increase the chance of finding a feasible solution, our 
algorithm assigns sensors so that the most complex 
constraints are satisfied first. We prepare the list of sensors 
available to the verifier so that confidentiality and integrity 
constraints are always satisfied. To do so, we remove from 
the list of available sensors all the sensors that cannot send 
information to the verifier under consideration because of 
confidentiality constraints, and we remove from the list of 
statements provided by each sensor the statements that the 
verifier does not consider as trustworthy because of integrity 
constraints. Then, we assign sensors to satisfy every 
separation-of-duty and redundancy requirements. Last, we 
assign assure that all statements required by the verifier are 
mapped to at least one sensor.  

Separation-of-duty constraints are satisfied by performing a 
heuristic search in the space of sensor assignments. For each 
constraint, we first select the sensor that maximizes ratio 
between the number of generated statements that are useful 
towards the satisfaction of the constraint, and the cost of the 
sensor. Once we have added such a sensor, for strict 
separation-of-duty constraints, we remove from the list of 
available sensors all other devices that share with it one or 
more users. We continue until we find a valid assignment. If 
we reach a point at which no sensors are available for 
satisfying the constraint, we backtrack and we select the 

next-best sensor that maximizes the ratio. The pseudo-code 
for this part of the algorithm is shown in Figure 3. 

After this phase, we consider the remaining set of 
statements to cover and we use the Chvatal heuristic to 
minimize the cost of the selected sensors. The heuristic 
maps sensors so that every statement required by the verifier 
is provided by at least one sensor. At each step we add to 
the list of sensors the one that maximizes the ratio between 
the number of statements it provides over the cost of using 
such a sensor. 

6. EVALUATION 
In this section, we evaluate the execution time of the 
proposed heuristic algorithm to validate its applicability in 
the online monitoring architecture. As the goal of the 
evaluation is to measure the efficiency of the algorithm in a 
wide range of situations, we perform our experiments on 
simulated scenarios. We represent the domain of the 
infrastructure state using a set of randomly generated 
statements (NDOMAIN). Information about such statements is 
provided (redundantly) by a specified number of sensors. 
For the application of separation-of-duty policies, we assign 
a variable number of users (UMAX) to manage each sensor. 
All simulations are performed on a 2GHz Core 2 Duo 
system with 2 GB of RAM. All data shown in the graphs is 
the average of 10 executions. 

Our first experiment shows the need of a heuristic algorithm 
for solving the sensor-mapping problem. We analyze the 
execution time for computing an optimal mapping using a 
standard branch-and-bound search algorithm. For a small 
infrastructure system with 40 devices, the time for 
computing the mapping is 565.3 seconds. For larger 
infrastructure systems, the time grows exponentially. As 
airport infrastructure systems might be composed of 
thousands of devices, such execution times are not 
acceptable. The sensor-mapping algorithm is run several 
times during the lifetime of the infrastructure, as devices are 
connected and disconnected from the system frequently and 
every time a new sensor-matching needs to be computed. 
Under the same conditions, our heuristic computes an 
approximated mapping in 0.073 seconds.  

 
Figure 4: Computation time for sensor mapping as a 

function of number of devices in the system.  

 
Figure 5: Computation time for sensor mapping as a 

function of policy size 
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In the second set of experiments, we use our heuristic and 
we examine how the execution time grows with the size of 
the infrastructure system. We evaluate the time for 
computing the sensor mapping of policies without 
separation-of-duty constraint (policy-n) and of policies only 
with separation-of-duty constraints (policy-sod-n). We 
consider a policy composed of 25 statements, and the 
redundancy requirement in the separation-of-duty 
constraints is set to 2. Additionally, we vary the number of 
statements provided by each sensor. We consider two cases: 
100 statements assigned to each sensor (policy-100, policy-
sod-100), and 200 statements per sensor (policy-200, 
policy-sod-200). Statements are chosen randomly from an 
overall domain whose size increases linearly with the 
number of devices. We find that in all cases the execution 
time grows linearly with the number of sensors and remains 
under acceptable time for online mapping. These results are 
shown in Figure 4. 

The third set of experiments examines how the number of 
statements in the policy affects the execution time. As with 
the previous set of experiments, we consider policies with 
and without separation-of-duty constraints, and we 
considered different numbers of statements on each sensor. 
For these experiments we fix the number of devices to 500. 
In all cases, the execution time grows linearly with the 
number of statements in the policy.  These results are shown 
in Figure 5. 

In summary, the heuristic algorithm provides an efficient 
way to perform online sensor mapping in our architecture, 
and the linear growth of the execution time allows our 
system to scale to large infrastructure systems. 

7. CONCLUSIONS 
The use of policy-based monitoring in the management of 
the interaction between eEnabled aircraft fleets and airport 
infrastructure provides a way to formalize the states of the 
infrastructure that each organization considers secure, safe, 
and efficient.  

In this paper we presented a framework for the specification 
of infrastructure security policies in the eEnabled fleets and 
airport environment and we described an architecture that 
allows the online monitoring of such policies in a multi-
organization scenario. Meta-policies are used to specify 
constraints in the interaction between sensors and 
verification server managed by different organizations, and 
they are also used to enforce constraints that use redundancy 
to reduce the possible consequences in the verification 
process of sabotages to sensors. The heuristic algorithm that 
we propose for the mapping of information sources and 
verification servers allows computing efficiently a solution 
that respects all confidentiality, integrity, and separation-of-
duty meta-policies without increasing excessively the 
overall cost of the solution when compared with the optimal 
mapping. 

To the best of our knowledge, this is the first paper to 
address the problem of establishing a security policy 
framework for future eEnabled fleets and airports. Future 
work will explore in detail major challenges presented in 
this paper. We are planning to implement the architecture 
presented in this paper on top of standard network 
management tools. Additionally, while this paper provides a 
framework for expressing and validating policies, it does 
not analyze the complex problem of defining and optimizing 
a complete set of security policies that it is suited for the 
airport environment. Future work should analyze such a 
problem in more detail. 
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APPENDIX A: EXAMPLES OF SECURITY POLICIES 

A.1. SAFETY RELATED POLICIES 
These policies are specified to ensure safety of aircraft. 
(1) Approaching aircraft must establish a broadband 

wireless link when it enters weight-on-wheels 
condition. 

(2) Airplane accessing a “ground-only” airline application 
must be in weight-on-wheels condition. 

(3) Airplane must be parked at gate when accessing airline 
application Y. 

(4) RFID tags in cabin must not be read when airplane is 
not parked at gate. 

A.2. ACCESS CONTROL POLICIES 
These policies are specified to prevent unauthorized access 
to aircraft. 

(5) Maintenance device must be disconnected from 
Internet when accessing aircraft systems. 

(6) Maintenance crew must login with proper credentials 
(such as passwords) in order to be able to use 
maintenance laptop to perform assignments. 

(7) Users logged in maintenance laptop as maintenance 
crew cannot access files or perform security actions 
privileged to administrator only.  

(8) Maintenance crew and device credentials must be 
authorized and authenticated before interacting with 
airplane systems. 

(9) Maintenance crew and device must be located on 
airport tarmac when accessing external access point of 
aircraft. 

(10) Maintenance crew and device must be located inside 
cabin when accessing internal access point of aircraft. 

A.3. BUSINESS RELATED 
These policies are specified to minimize operational costs of 
aircraft while maintaining quality of network connection. 

(11) Aircraft must automatically choose the most cost-
effective wireless data link available that satisfies the 
minimum bandwidth requirement. 

(12) When current bandwidth drops below the minimum 
bandwidth threshold, aircraft must automatically 
search for the next cheapest available wireless data 
link. 

(13) Maintenance devices should use the cheapest available 
wireless network access point to connect to Internet. 

(14) RFID tag must not respond to a query issued less than 
a threshold distant to protect airlines proprietary data.  

(15) While taxing, for a period of time, an airplane is 
allowed to be associated with two access points for 
smooth handover.  

A.4. AIRPORT OPERATION RELATED 
These policies are specified to enable efficient resource 
allocation at the airport. 

(16) Technology based requirement. Examples: 

• Airplane using WiFi technology must not use 
Terminal T1. 

• Airplane using Cellular technology must use Gates 
G1-G5 at Terminal T2. 

o Airplane using WiMAX must use runway 
R1 for takeoff. 

(17) Airport layout based requirement. Examples: 

• Airplane using Gates G10 to G20 must use 
WiMAX technology. 

• Airplane using runway R2 must not use WiMAX 
technology. 

• Crew at tarmac below Gates 30-35 must not use 
Cellular.   

(18) Time-based (network/airport demand based) 
requirement. Examples: 
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• Airplane using the airport computer network at 
terminal T3 between time t1 to time t2 must use 
WiMAX. 

• Airplane using the airport computer network at 
Gates G40-G45 must not use WiFi. 
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