
 1

A Security Policy Framework for eEnabled Fleets and
Airports

Mirko Montanari, Roy H. Campbell

University of Illinois at Urbana-Champaign
{mmontan2, rhc}@illinois.edu

Krishna Sampigethaya, Mingyan Li
Boeing Research & Development

{radhakrishna.g.sampigethaya,mingyan.li}@boeing.com

Abstract—The future airport is predicted to be a highly net-
centric system-of-systems with advanced networking and
wireless technology to accommodate the “eEnabled
aircraft,” enhanced surface area operations, as well as
growing business and societal demands. In this paper, we
present a classification of security policies that need to be
enforced in such modern airport systems. We propose a
distributed architecture for policy-compliance monitoring
that enables runtime verification of compliance in the multi-
organization environments typical of large-scale
infrastructure systems. Compared to current solutions, our
monitoring architecture allows each organization to acquire
independently information about the state of the
infrastructure while respecting integrity, confidentiality, and
separation-of-duty constraints that arise because of the
interaction between parts of the infrastructure managed by
different organizations12.

TABLE OF CONTENTS

1. INTRODUCTION ... 1	
2. RELATED WORK ... 2	
3. E-ENABLED FLEETS AND AIRPORTS 2	
4. FORMALIZATION OF POLICIES .. 4	
5. MULTI-ORGANIZATION POLICY COMPLIANCE 6	
6. EVALUATION ... 8	
7. CONCLUSIONS ... 9	
REFERENCES ... 9	
APPENDIX A: EXAMPLES OF SECURITY POLICIES 10	
BIOGRAPHY .. 11	
ACKNOWLEDGEMENTS .. 11	

1. INTRODUCTION
A recent vision in commercial aviation is the “e-Enabled
aircraft” that operates as an intelligent, mobile node in the
Internet [1]. Safety, security, environmental, efficiency and
economic benefits are provided to airlines, crew, ground
personnel, passengers and business stakeholders. The
performance of future eEnabled fleets, however, depends on
the correct operation of network services provided by
airport infrastructure [2]. As the complexity of airport
infrastructure increases and changes become more frequent,
manual control and operation become ineffective.
Unintended or malicious changes in the configuration of a

1 978-1-4244-7351-9/11/$26.00 ©2011 IEEE
2 IEEEAC paper#1377, Version 5, Updated 2011:01:11

single system could introduce errors in the overall
infrastructure configuration that might remain invisible and
degrade or disrupt operations (e.g., [3]). Hence, for
preserving performance gains of e-Enabling, such errors
must be timely detected to prevent systems from operating
in insecure or inefficient states.

In this paper, we focus on the problem of monitoring airport
infrastructure operations to detect policy violations. Policies
provide an efficient way to manage the operation of the
airport infrastructure: each policy describes a portion of the
correct operation state. When the system is operating
outside the states specified by the policy, the system is
potentially exposed to security problems and inefficiencies
that should be corrected quickly. For example, a policy may
mandate that aircraft must land (i.e., weight-on-wheels) and
then access a remote airline system on the Internet for
software update. If the aircraft accesses airline system
before landing, then unwarranted aircraft safety concerns
emerge about potentially malicious software updates or
potential exposure of flight-critical systems to unauthorized
external access. On the other hand, if the aircraft does not
access the airline system even after landing, the error
condition may create an undesirable delay in gate turn-
around time for software refresh. Another policy may
specify that maintenance devices must be disconnected from
Internet when accessing airplane systems to avoid acting as
unintentional stepping-stones for threats. While a dedicated
monitoring infrastructure could be developed for each
policy, such an approach may prove expensive and not
scalable given size and frequency of policy modifications.

The proposed online policy monitoring system for airport
infrastructure addresses the scalability problem by providing
a general framework for acquiring information about
infrastructure state at runtime and checking if the current
situation is in violation of policies that govern
infrastructure. However, since systems in airport
infrastructure are typically owned and controlled by
multiple organizations, such a monitoring system is faced
with several challenges in the design of the architecture and
in the selection of the devices to use for acquiring
information. First, each organization must enforce policies
independently. Second, the validation of a policy might
require acquiring information about parts of the
infrastructure managed by a different organization. This
creates integrity and confidentiality problems, as business
conflicts between competing organizations might create

 2

reticence in sharing information or in relying on external
information for analysis. Third, to protect against sabotage,
malicious employees, and device errors, critical information
for the analysis should be acquired redundantly and in ways
that do not allow a single entity to corrupt all information
sources (i.e., separation-of-duty constraints).

The contribution of this paper is two-fold. First, we present
a classification of security policies for monitoring
interactions between e-Enabled fleets, maintenance
personnel and airport infrastructure. To our best knowledge,
it is the first paper to establish the security policy
framework for future eEnabled fleets and airports. Second,
we present a system architecture that allows each
organization to monitor the infrastructure independently.
Our architecture is based on an algorithm that enables each
organization to collect efficiently state information while
respecting integrity, confidentiality, and separation-of-duty
constraints that need to be enforced for the deployment of
such monitoring in a multi-organization scenario.

The rest of the paper is organized as follows. Section 2
provides an overview of related work in the area of policy
verification. Section 3 describes the infrastructure of
modern airports considered and the type of policies that
need to be defined in such environments. Section 4 provides
a framework for formalizing such policies. Section 5
addresses the problem of multi-organization validation of
policies. Section 6 describes our experimental results, and
Section 7 concludes our work.

2. RELATED WORK
Airport environment policy definitions have encompassed
rules that regulate the use of runways by different types of
aircraft [4]. In this work we provide a more general
framework for the definition of policies that integrate the
network infrastructure of the airport.

The problem of acquiring information about network
infrastructure has been previously addressed by systems
such as NetQuery [5] and standards such as WBEM [6].
However, none of the previous approaches is able to
automatically deal with complex multi-organization
constraints such as replication and separation of duty.

Other work addressed the problem of detecting potential
security problems present in a system configuration. Nessus
[7], TVA [8], and Mulval [9] are systems proposed for
detecting the security consequences of erroneous
configuration of infrastructure. The focus of this paper is on
how the information about the state of the infrastructure can
be acquired so that it can be analyzed with the use of such
techniques.

3. E-ENABLED FLEETS AND AIRPORTS
The network infrastructure of airports supports several
applications, from interconnecting devices at check-in desks
and gates to supporting the communication between aircraft
and airline systems. In this work, we focus on the
interactions between e-Enabled fleets, maintenance
personnel, and airport infrastructure services. Figure 1
provides an abstract view of the system architecture that we
consider representative of the e-Enabled airline system

Figure 1: Architecture of the infrastructure of a future airport system.

 3

architecture at airports [10]. To support the maintenance of
the e-Enabled fleet, four classes of devices interact in the
airport infrastructure:

(1) Aircraft Hardware Maintenance: Portable devices
located on the tarmac that access aircraft systems to
perform net-enabled operations (e.g., hardware
inspection/repair, sensor readings). These typically
belong to organizations that are leased or owned by
airlines.

(2) Connectivity: Fixed wireless/wired network access
points (e.g., WiFi, WiMAX, cellular, and power line)
that interconnect e-Enabled aircraft with off-board
systems on the Internet. These typically are owned by
third party service providers.

(3) Airline Maintenance Applications: Portable devices
that are used in the cabin and gate to communicate
directly with aircraft systems for airline maintenance
applications (e.g., software update, cabin access).
These are typically owned/leased by the airlines.

(4) Tarmac Security Monitoring: Physical security
services provided by CCTV camera, automatic door
locks, and emergency devices. These are typically
owned by the airport authority.

For supporting maintenance, we consider crew devices that
(i) maintain the aircraft RFID-tagged hardware; (ii) manage
software, and multimedia; and (iii) manage gates and
control access to the aircraft cabins. Additionally, our
system model considers other IT infrastructure that interacts
with these devices. We include the interfaces with airline
back-office servers that reside remotely and provide
information, software and multimedia for the airline fleet.
Security monitoring includes all physical security devices
such as cameras or devices that enforce crew access control
in restricted areas of / around the aircraft. Such devices
communicate using the network infrastructure provided by
the airport.

The online validation of compliance requires a device to
share information about its state with the rest of the
infrastructure. We assume that each device allows access to
a portion of the system’s state that it can “observe”, i.e., that
it can acquire because of its function. In this paper we focus
on which information should be shared and not on how the
information is shared by each device, as there are existing
technologies through which devices can share information
about the state. Network management systems, such as
WBEM [6], allow information about the current state of the
device to be queried from the network. Alternatively, secure
introspection techniques [11, 12] can be used to monitor the
state of a device in a way that is resilient to compromises.
Moreover, it is possible for developers to integrate these
capabilities in their software and allow authorized third
party to obtain information about the system’s state through
application-dependent protocols.

We consider an adversary whose objective is lowering the
performance gains of the e-Enabled aircrafts and airport
systems by exploiting vulnerabilities in the policy
monitoring system. The adversary attempts to provide false
state information to the policy monitoring system so that
policy violations are not detected (i.e., false negative), or
false policy violation notifications are generated (i.e., false
positive). The adversary can compromise a limited number
of devices in the infrastructure, i.e., using a set of valid
credentials (e.g., malicious insider), or by exploiting
vulnerabilities in the devices. We assume that the adversary
is not able to compromise a majority of devices that are part
of the same redundant set used for policy validation (i.e., the
same vulnerability is not present on the majority of devices
that provide a critical piece of information about the state).
For non-critical policies, however, we assume devices report
their state information correctly, thereby considering threats
only from unintentional misconfigurations and failures.

3.1. SECURITY POLICIES FOR E-ENABLING
The interactions between airport infrastructure, maintenance
devices, and e-Enabled aircraft fleets create a complex
system composed of hundreds of elements. This
infrastructure needs to operate correctly to provide the
services that maintain the airport and keep the aircraft
operational. To enable a synergetic interaction between the
different parts and to establish security requirements,
organizations use security policies that define the correct
configuration of each component and define the actions that
are permitted by each user or device. While compliance to
policies cannot guarantee perfect security, security policies
provide a basic level of assurance against attacks that would
be avoidable had proper security measures been taken.

For example, a security policy for e-Enabled aircraft might
mandate that they must communicate with the ground
systems to check for new updates, but only upon landing.
Not performing this check before landing could be
potentially a sign of other malfunctioning. It could
potentially introduce malicious updates or delay the
application of important updates. Similarly, a security
policy might specify that maintenance devices be authorized
to access the aircraft systems only if physically located on
the runway near the plane.

In the definition of security policies for airports, we can
classify policies in several classes based on the objective as
follows:

(1) Safety Related: These are used to ensure safe and
regulated operation of aircraft.

(2) Access Control Related: These are used to prevent
unauthorized crew and device access to aircraft
systems.

(3) Business Related: These are used to securely minimize
operational costs of aircraft and ensure quality of
network connections.

 4

(4) Airport Operation Related: These are used to securely
enable efficient allocation and ensure 24/7 availability
of resources at the airport.

Policies can be defined on each type of service provided by
aircraft or ground systems.

The definition of proper policies for the operation of the
infrastructure is critically important. Even if policies are
currently defined by several organizations for different parts
of the airport infrastructure, policies are yet to be fully
defined for regulating secure interactions between airport
ground systems and e-Enabled aircraft.

Appendix A provides several examples the type of policies
that need to be defined in each policy class. Note that
several of these requirements are theoretical and formulated
for use only in our research. For the rest of the paper we
focus on three examples as representative policies for the
different policy classes:

(2) Aircraft accessing a “ground-only” airline application
must be in weight-on-wheels condition.

(5) Maintenance device must be disconnected from the
Internet when accessing aircraft systems.

(11) Aircraft must automatically choose the most cost-
effective wireless data link available that satisfies the
minimum bandwidth requirement.

Infrastructure systems have mechanisms for enforcing the
conditions specified in the policies. However, for multiple
reasons the enforcement of policies might fail: software
errors, hardware failures, or incorrect configurations might
allow the system to reach a state that violates the policy. In
this case, it is important to have a system that is able to
detect such violations and notify the situation for
rectification. Additionally, reliable logging of violations is
essential to provide evidence of compliance to policies. To
address these issues, we develop automatic methods for
identifying when the infrastructure operates outside the
conditions specified by the policy, while the process of
acquiring information about the infrastructure state respects
the confidentiality and integrity requirements posed by each
organization.

4. FORMALIZATION OF POLICIES
Automatic detection of policy violations is impossible
without knowing exactly which situations are considered
policy compliant and which are not. To specify policies
without ambiguities, it is necessary to express them in a
formal language. Given its flexibility and expressiveness,
we use the Datalog language [13]. This language has been
used in previous work for the specification of access control
policies [14] and security of network infrastructure [9]. In
particular, we represent the state of the system using the
RDF language [15] and we represent policies using
inference rules [16].

Using RDF, each entity in the system is identified by a
unique string called URI. For example, we identify the first
runway of the SEATAC airport using
http://www.portseattle.org/seatac/run1. Note that the URI is
interpreted as a string and it is not required to identify an
actual webpage. For simplifying notation in the rest of the
paper we represent resources with strings starting with a
lower case letter. The runway of the example is identified
with seatac_run1. Resources have a type that is organized in
a class hierarchy. The state of the system is represented as a
set of statements. Each statement represents a “fact” that it
is true in the state of the system and it is expressed as a 3-
tuple. For example, we can represent the fact that an aircraft
landed on runway 1 using the notation (aircraft1, landed,
seatac_run1). In this statement, the first element (aircraft1)
is a resource and represents the subject of the statement (in
this case the tail number that identifies an aircraft); the last
element (seatac_run1) is a resource and it is called object of
the statement. The second element (landed) is called
predicate and represents the type of relation between the
subject and the object (in this case that the aircraft aircraft1
touched ground on runway seatac_run1). Unique URI
strings also identify predicates. A timestamp is associated to
each statement to identify the time at which the statement is
generated.

Policies are expressed as rules. A policy can be interpreted
as IF <condition> THEN <consequence>. The condition is
called rule body, and the consequence is called rule head
and it is written as <body> à <head>. The body and the
head of the rule are composed of statement patterns. A
statement pattern is a 3-tuple similar to a statement, but it
can have variables in the subject and object position.
Variables are identified with an uppercase letter. For
example, (A, landed, seatac_run1) is a statement pattern. A
statement pattern can match a statement if there is a
substitution of variables that make the two statement equals.
In our example, the substitution A/aircraft1 makes the
statement pattern equals to the statement (aircraft1, landed,
seatac_run1).

The body is composed of a conjunction of statements, while
the head is a single statement. For example, policy (17),
example 2 can be encoded as (A, landed, seatac_run2), (A,
useNetwork, WiMAX) à (A, violates, policy17).

4.1. EXAMPLES OF FORMAL POLICIES
In order to be able to formalize policies we need to define a
vocabulary of resource classes and predicates for expressing
the state of the system. This vocabulary is called an
ontology. We define the resource types airport, runway,
application, network, and maintenance_device. We also
define the special resource internet to represent the public
Internet network, and the resource ground-only to indicate
that application should be accessed only when in weight-on-
wheel status.

 5

We define a set of predicates that describe the relation
between resources. The predicate type (defined by the RDF
standard) specifies that a particular resource belongs to a
class. The predicate violation specifies that a resource is
violating a policy. The predicate part_of describes that a
resource is part of a larger resource. For example, we
identify that an application p1 is managed by the airline al1
using the statement (p1, part_of, al1).

We define predicates that are specific to the case of airports.
In policy (2), the predicate landed specifies that the aircraft
have weight-on-wheels on a runway. In policy (11), we
define a set of predicates that provide information about the
state of the network interconnections. We define the
predicate airplane_min_bw, which indicates the minimum
bandwidth requirement of the plane (collected from
information about the current applications running on the
aircraft). Similarly, we define the predicate
net_available_bw that define the bandwidth available in a
wireless network. The predicate cost identifies the cost of
using a particular wireless network. The encoding of the
rules in Datalog is shown in the first two columns of
Table 1.

4.2. RUNTIME VALIDATION OF POLICIES
The verification of policies requires aggregating information
about the state of the system. Once information is collected,
we check if the overall state triggers policy violations.

In our architecture, the monitoring software running on the
device can be configured to send messages that contain
updates about the device state every time that there is a state
change. For example, when the aircraft aircraft1 lands, a
device s installed on the aircraft can send a message to
notify that the state of the airplane changed. This message
contains the statement (aircraft1, landed, seatac_run1). The
last column of Table 1 shows the devices providing the
different parts of the information about the policy. As
multiple organizations can verify independently the policies,
each device might need to send its state update information
to different entities. Section 5 describes an algorithm on
device selection by each organization, in order to determine
the state of the infrastructure relevant to policies.

Policies can also be used to define complex concepts from
information about the system. For example, we use two
rules in policy (5) to define the concept of “connected to
Internet”. We say that if a device D1 that can receive
messages from another device D2, then D1 is “connected” to

Policy RDF Rule Example of Sources

(2) Aircraft accessing a
“ground-only” airline
application must be in
weight-on-wheels
condition.

(A, type, aircraft), (P, type, application),
(AL, type, airline), (R, type, runway),

(A, logged_on, P), (P, part_of AL), (P, apptype, ground-
only), ¬(A, landed, R) à (A, violation, policy2)

aircraft aircraft1: (aircraft1,
landed, *)

airline airlineD: (*, partof,
airlineD), (*, logged_on, P),
(P, type

(5) Maintenance device
must be disconnected
from Internet when
accessing airplane
system

(D, type, maintainance_device), (A, type, aircraft), (N,
type, network), (D1, type, device), (D2, type, device)

(D, connected_to, internet), (D, connected_to, N), (N,
partof, A) à (D, violation, policy5)

(D1, rec_from, D2) à (D1, connected_to, D2)
(D1, connected_to, D2), (D2, connected_to, internet)
à (D1, connected_to, internet)

maintainance_device dev1:
(dev1, connected_to, *)

aircraft aircraft1: (*, partof,
aircraft1)

(11) Airplane must
automatically choose
the cheapest available
wireless data link that
satisfies the minimum
bandwidth requirement

(A, type, aircraft), (N, type, network), (M, type, network),
(AIR, type, airport), (SW, type, application),

(A, connected_to, N), (N, partof, AIR),
(A, airplane_min_bw, MINBW), (N, cost, NC), (A, inrange,
M), (M, partof, AIR), (M, net_available_bw, AVMBW), (M,
cost, MC), (M != N), (MC < NC)à (A, violation, policy11)

aircraft aircraft1: (aircraft1,
connected_to, *), (aircraft1,
airplane_min_bw, *),
(aircraft1, inrange, *)

airport seatac: (N, partof,
seatac), (N, cost, *), (N,
net_available_vw, *)

Table 1: Formal representation of three airport policies. The column sources contains statement patterns that
summarize the set of statements generated by each device.

 6

D2. Also, we define that the connectivity is transitive by
saying that if a device D1 is connected to a device D2 that is
connected to the Internet, then device D1 is considered
connected to the Internet as well. Using this rule, we can
detect complex indirect interconnections to the public
Internet network.

Often, multiple devices generate the same piece of
information. In policy (2), the information about the weight-
on-wheel condition of the aircraft may be provided both by
aircraft systems and by the ground radar of the airports. Our
mapping algorithm takes advantage of these redundancies to
enable the application of separation-of-duty constraints and
redundant validation in the monitoring process.

5. MULTI-ORGANIZATION POLICY COMPLIANCE
The detection of policy violations in airport systems is
complicated by the need of preserving the integrity and
confidentiality of information about the system’s state
across the different organizations that manage the airport
infrastructure.

 Confidentiality problems arise because of the nature of the
collaboration between organizations in large infrastructures.
Often, competing organizations are required to interact to
guarantee compliance to government regulations. However,
sharing information about the state of the system might
reveal to the competitor information about the
organization’s structure. For this reason, an organization
might maintain confidential part of the state of the system to
other organizations.

Integrity problems arise in the same context when there is
limited trust between organizations. Information used for
the auditing of policies that are considered reliable for an
organization might not be considered trustworthy for
another. An organization might want to protect itself against
misuse by third party organizations, and hence auditing
should not be based on potentially tainted information
coming from external organizations.

Additionally, redundancy and separation-of-duty can be
imposed as additional integrity constraints to protect against
compromises of sensors by an attacker or by a malicious
insider. When these constraints are in place, information for
the validation of policies is acquired from multiple
independent sensors. All these sensors provide information
about the same portion of the state of the system. Using
such redundant information, the correct state can be
reconstructed even if a small number (i.e., the minority) of
sensors are compromised.

It is important to assure that the sensors from which
information is acquired are “independent”. Malicious
insiders can use valid credential to take control of sensors. If
a set of valid credential is compromised, all sensors
controlled using such authorization can be compromised.
Separation-of-duty constraints are a special type of

redundancy constraints that makes this type of attack harder:
they specify that the set of sensors providing the redundant
information for the validation of the policy should not be
controlled using the same credential.

Our system provides automated methods for mapping the
policies audited by each organization to the sensors used for
acquiring the information needed in the evaluation of the
policy.

The architecture of the system is shown in Figure 2. Policies
are verified at runtime by machines that integrate the
information about the state. These machines are called
verifiers. All devices that generate information that it is used
for the evaluation of a policy are called sensors (i.e., they
“sense” a portion of the system’s state). Each organization
independently manages one or more verifiers and it can
select a set of policies to be validated on each of them.
Organizations can place verifiers in multiple areas of the
network to isolate them from direct attacks and provide
redundancy to the policy validation process. Given this
policy assignment, our system maps sensors to verifiers to
assure that each verifier receives information to validate
policies in a way that satisfies the organization’s
requirements about confidentiality, integrity, and separation-
of-duty.

Confidentiality, integrity, and separation-of-duty
requirements are formally specified as meta-policies. Meta-
policies are constraints specified on how the information for
validating policies is acquired from the system.
Confidentiality meta-policies are specified by organizations
and specify which information generated by sensors should
not be shared with other organizations. Integrity meta-
policies are specified for each organization and for each
statement pattern in a policy. Using an integrity meta-
policy, an organization specifies the set of organizations and
sensors that are trusted for the policy verification.

Type Meta-policy Condition

C (aircraft1,
airlineD)

Information about the state
of the aircraft aircraft1
cannot be forward to a
competing airlines

I (5,
connected_to,
contractorA)

ContratorA is not trusted to
provide the information
about which networks are
used by its devices

S (1, * landed *,
3, true)

Statements (*, landed, *) of
policy 1 need to be acquired
form three independent
sensors

Table 2: Examples of confidentiality (C), integrity (I),
and separation-of-duty (S) policies.

 7

Separation-of-duty policies specify that certain statements
need to be confirmed using redundant and independent
sources. Table 2 shows an example of these types of
policies.

5.1. MAPPING MODEL
We represent a source device as a tuple sj = (Oi, Ui, Si, Ci)
where Oi is the organization that manages the sensors, Ui the
set of users authorized to manage the sensor, Si is the set of
statements about the state that can be potentially generated
by the device, and Ci is a function Ci : E à N that
represents a cost of sending information to an organization
E.

The union of all the data coming from the sensors is all the
information required for performing the policy validation.
At every instant in time t, only a subset Si’(t) ⊂ Si of
statement is true for a sensor i. For a system composed of n
sensors, the union of all statements generated at time t by
the sensors represents the complete state S(t) of the
infrastructure at time t (i.e., S(t) = ∪ Si’(t) with i=1,…, n).
To validate policies, we create a knowledge base KB(t) that
integrates the state S(t) and the policies. We use inference to
check if it is possible to use the rules to infer statements that
indicate policy violations from the state S(t).

When rules are distributed across verifiers, it is not
necessary to recreate the entire state at each of them. Each
verifier needs to acquire the portion of the state that it is
used by the policies assigned to it. For the purpose of
assignment, we represent a policy pi as the set of all
potential statements Sp that can match any of the statement
patterns of pi. For example, in a system with two devices d1
and d2 that can have an attribute state with values on and
off, the policy (DA state S, DB state S, DA != DB, à fail) has
Sp = {d1 state on, d1 state off, d2 state on, d2 state off}.

A verifier is represented as a couple vi = (O, P) where O is
the organization managing the verifier, and P is a set of
policies assigned to the verifier.

Confidentiality meta-policies are defined as access control
tuples (S, O), where S is a sensor and O an organization. If a
tuple (si, oj) is defined in the system, then the data generated
by si can be sent to the organization oj.

Integrity policies are defined as access control tuples (P, S,
O). If a tuple (pi, si, oj) is present in the system then the
policy pi can use data generated by sensors managed by oj as
information for the statement si.

Redundancy and separation of duty policies are defined as
tuples (P, S, R, D) where P is a policy, S a set of statements,
R the redundancy with which these statements need to be
validated, and D is true if separation of duty is required,
false otherwise.

5.2. SENSOR-VERIFIER MAPPING
The sensor-verifier mapping associates each sensor with one
or more verifiers that require its state information for the
validation of policies. As multiple devices can provide the
same information about the state, and policy validation
needs to satisfy complex requirements, obtaining the least-
cost mapping is not trivial.

Without considering meta-policies, a verifier needs to
communicate with the least-cost subset of the available
sensors that provide all statements required by the policies
managed by it. Formally, if Pi is the set of statements
required by policy pi, and if a verifier is managing the
policies p1,…,pn, then the set of statements required by the
verifier is Sv = ∪i=1..n Pi. Each sensor provides a subset of
statements Sj and has a cost of communicating the verifier

Figure 2: Example of the association between sensors and verifiers in a multi-organization online policy
monitoring system. Different organizations manage independent verifiers, which acquire information from

devices (sensors) under the administrative control of other organizations

 8

cj. The goal of the sensor-verifier mapping is to find the
minimum cost subset of sensors that generate all statements
Sv required by the verifier. In this form, the problem is NP-
complete and the proof is based on a simple mapping of the
minimum cover set problem [17] to instances of our
problem without meta-policies.

We use the Chvatal [17] heuristic for the minimum cover set
problem as a base for our mapping algorithm. This heuristic
selects a set of sensors that minimizes the cost of acquiring
all information required by the policies. However, our
mapping requires taking into account meta-policies as
additional constraints. Confidentiality and integrity
constraints require certain sensors not to be used.
Separation-of-duty constraints specify that, for a specific
subset of the statements, the mapping needs to include
multiple sensors that generate such statements.

To increase the chance of finding a feasible solution, our
algorithm assigns sensors so that the most complex
constraints are satisfied first. We prepare the list of sensors
available to the verifier so that confidentiality and integrity
constraints are always satisfied. To do so, we remove from
the list of available sensors all the sensors that cannot send
information to the verifier under consideration because of
confidentiality constraints, and we remove from the list of
statements provided by each sensor the statements that the
verifier does not consider as trustworthy because of integrity
constraints. Then, we assign sensors to satisfy every
separation-of-duty and redundancy requirements. Last, we
assign assure that all statements required by the verifier are
mapped to at least one sensor.

Separation-of-duty constraints are satisfied by performing a
heuristic search in the space of sensor assignments. For each
constraint, we first select the sensor that maximizes ratio
between the number of generated statements that are useful
towards the satisfaction of the constraint, and the cost of the
sensor. Once we have added such a sensor, for strict
separation-of-duty constraints, we remove from the list of
available sensors all other devices that share with it one or
more users. We continue until we find a valid assignment. If
we reach a point at which no sensors are available for
satisfying the constraint, we backtrack and we select the

next-best sensor that maximizes the ratio. The pseudo-code
for this part of the algorithm is shown in Figure 3.

After this phase, we consider the remaining set of
statements to cover and we use the Chvatal heuristic to
minimize the cost of the selected sensors. The heuristic
maps sensors so that every statement required by the verifier
is provided by at least one sensor. At each step we add to
the list of sensors the one that maximizes the ratio between
the number of statements it provides over the cost of using
such a sensor.

6. EVALUATION
In this section, we evaluate the execution time of the
proposed heuristic algorithm to validate its applicability in
the online monitoring architecture. As the goal of the
evaluation is to measure the efficiency of the algorithm in a
wide range of situations, we perform our experiments on
simulated scenarios. We represent the domain of the
infrastructure state using a set of randomly generated
statements (NDOMAIN). Information about such statements is
provided (redundantly) by a specified number of sensors.
For the application of separation-of-duty policies, we assign
a variable number of users (UMAX) to manage each sensor.
All simulations are performed on a 2GHz Core 2 Duo
system with 2 GB of RAM. All data shown in the graphs is
the average of 10 executions.

Our first experiment shows the need of a heuristic algorithm
for solving the sensor-mapping problem. We analyze the
execution time for computing an optimal mapping using a
standard branch-and-bound search algorithm. For a small
infrastructure system with 40 devices, the time for
computing the mapping is 565.3 seconds. For larger
infrastructure systems, the time grows exponentially. As
airport infrastructure systems might be composed of
thousands of devices, such execution times are not
acceptable. The sensor-mapping algorithm is run several
times during the lifetime of the infrastructure, as devices are
connected and disconnected from the system frequently and
every time a new sensor-matching needs to be computed.
Under the same conditions, our heuristic computes an
approximated mapping in 0.073 seconds.

Figure 4: Computation time for sensor mapping as a

function of number of devices in the system.

Figure 5: Computation time for sensor mapping as a

function of policy size

 9

In the second set of experiments, we use our heuristic and
we examine how the execution time grows with the size of
the infrastructure system. We evaluate the time for
computing the sensor mapping of policies without
separation-of-duty constraint (policy-n) and of policies only
with separation-of-duty constraints (policy-sod-n). We
consider a policy composed of 25 statements, and the
redundancy requirement in the separation-of-duty
constraints is set to 2. Additionally, we vary the number of
statements provided by each sensor. We consider two cases:
100 statements assigned to each sensor (policy-100, policy-
sod-100), and 200 statements per sensor (policy-200,
policy-sod-200). Statements are chosen randomly from an
overall domain whose size increases linearly with the
number of devices. We find that in all cases the execution
time grows linearly with the number of sensors and remains
under acceptable time for online mapping. These results are
shown in Figure 4.

The third set of experiments examines how the number of
statements in the policy affects the execution time. As with
the previous set of experiments, we consider policies with
and without separation-of-duty constraints, and we
considered different numbers of statements on each sensor.
For these experiments we fix the number of devices to 500.
In all cases, the execution time grows linearly with the
number of statements in the policy. These results are shown
in Figure 5.

In summary, the heuristic algorithm provides an efficient
way to perform online sensor mapping in our architecture,
and the linear growth of the execution time allows our
system to scale to large infrastructure systems.

7. CONCLUSIONS
The use of policy-based monitoring in the management of
the interaction between eEnabled aircraft fleets and airport
infrastructure provides a way to formalize the states of the
infrastructure that each organization considers secure, safe,
and efficient.

In this paper we presented a framework for the specification
of infrastructure security policies in the eEnabled fleets and
airport environment and we described an architecture that
allows the online monitoring of such policies in a multi-
organization scenario. Meta-policies are used to specify
constraints in the interaction between sensors and
verification server managed by different organizations, and
they are also used to enforce constraints that use redundancy
to reduce the possible consequences in the verification
process of sabotages to sensors. The heuristic algorithm that
we propose for the mapping of information sources and
verification servers allows computing efficiently a solution
that respects all confidentiality, integrity, and separation-of-
duty meta-policies without increasing excessively the
overall cost of the solution when compared with the optimal
mapping.

To the best of our knowledge, this is the first paper to
address the problem of establishing a security policy
framework for future eEnabled fleets and airports. Future
work will explore in detail major challenges presented in
this paper. We are planning to implement the architecture
presented in this paper on top of standard network
management tools. Additionally, while this paper provides a
framework for expressing and validating policies, it does
not analyze the complex problem of defining and optimizing
a complete set of security policies that it is suited for the
airport environment. Future work should analyze such a
problem in more detail.

REFERENCES
 [1] “E-Enabling,” Boeing Frontiers, 02:04, August 2003.

http://www.boeing.com/news/frontiers/archive/2003/au
gust/i_ca1.html

[2] R. D. Apaza, “Wireless communications for airport
surface: an evaluation of requirements,” IEEE
Aerospace Conference, pp.1779-1788, March 2005

[3] David Oppenheimer, Archana Ganapathi, David A.
Patterson, “Why do internet services fail, and what can
be done about it?”, USITS'03, USENIX Symposium on
Internet Technologies and Systems, USENIX, 2003.

[4] Stephen D. Brady, Richard J. Hillestad, “Modeling the
External Risk of Airports for Policy Analysis”, RAND
European-American Center for Policy Analysis, 1995

[5] Alan Shieh, Oliver Kennedy, Emin Gun Sirer, and
Fred B. Schneider, “NetQuery: A General-Purpose
Channel for Reasoning about Network Properties.” in
USENIX Symposium on Operating Systems Design and
Implementation, 2008

[6] Distributed Management Task Force (DMTF), “Web-
Based Enterprise Management (WBEM).”
http://www.dmtf.org/standards/wbem, 2009.

[7] Tenable Network Security. “Nessus: the Network
Vulnerability Scanner.” http://nessus.org/nessus/, 2009

[8] Sushil Jajodia, Steven Noel, and Brian O. Berry.
“Topological analysis of network attack vulnerability.”
Managing Cyber Threats: Issues, Approaches and
Challenges, 2005

[9] Ou, X., W.F. Boyer, and M.A. McQueen. 2006. “A
scalable approach to attack graph generation.” in ACM
Conference on Computer and Communications
Security, ACM, 2006

[10] David Allen, “Electronic Flight Bag: Real-Time
Information Across An Airline’s Enterprise”, Boeing
Aero Magazine, Qtr 2.08, 2008.

[11] Monirul I. Sharif, Wenke Lee, Weidong Cui, Andrea
Lanzi, "Secure in-vm monitoring using hardware
virtualization" in ACM Conference on Computer and
Communications Security, ACM, 2009

 10

[12] Bryan D. Payne, Martim D. P. de A. Carbone, Wenke
Lee, "Secure and flexible monitoring of virtual
machines", in Annual Computer Security Applications
Conference, IEEE Computer Society, 2007

[13] Stefano Ceri, Georg Gottlob, and L Tanca. “What you
always wanted to know about Datalog (and never
dared to ask).” IEEE Transactions on Knowledge and
Data Engineering, 1989

[14] Avik Chaudhuri, Prasad Naldurg, G. Ramalingam,
Sriram Rajamani, and L. Velaga. “EON: Modeling and
analyzing dynamic access control systems with logic
programs.” in ACM Conference on Computer and
Communications Security. 2008.

 [15] W3C. “Resource Description Framework (RDF).”
http://www.w3.org/RDF/, 2004

[16] Campbell, Roy H., and Mirko Montanari. “Multi-
Aspect Security Configuration Assessment.” in ACM
Workshop on Assurable & Usable Security
Configuration (SafeConfig), 2009

[17] Václav Chvatal. “A Greedy Heuristic for the Set-
Covering Problem”. Mathematics of Operations
Research, 1979

APPENDIX A: EXAMPLES OF SECURITY POLICIES

A.1. SAFETY RELATED POLICIES
These policies are specified to ensure safety of aircraft.
(1) Approaching aircraft must establish a broadband

wireless link when it enters weight-on-wheels
condition.

(2) Airplane accessing a “ground-only” airline application
must be in weight-on-wheels condition.

(3) Airplane must be parked at gate when accessing airline
application Y.

(4) RFID tags in cabin must not be read when airplane is
not parked at gate.

A.2. ACCESS CONTROL POLICIES
These policies are specified to prevent unauthorized access
to aircraft.

(5) Maintenance device must be disconnected from
Internet when accessing aircraft systems.

(6) Maintenance crew must login with proper credentials
(such as passwords) in order to be able to use
maintenance laptop to perform assignments.

(7) Users logged in maintenance laptop as maintenance
crew cannot access files or perform security actions
privileged to administrator only.

(8) Maintenance crew and device credentials must be
authorized and authenticated before interacting with
airplane systems.

(9) Maintenance crew and device must be located on
airport tarmac when accessing external access point of
aircraft.

(10) Maintenance crew and device must be located inside
cabin when accessing internal access point of aircraft.

A.3. BUSINESS RELATED
These policies are specified to minimize operational costs of
aircraft while maintaining quality of network connection.

(11) Aircraft must automatically choose the most cost-
effective wireless data link available that satisfies the
minimum bandwidth requirement.

(12) When current bandwidth drops below the minimum
bandwidth threshold, aircraft must automatically
search for the next cheapest available wireless data
link.

(13) Maintenance devices should use the cheapest available
wireless network access point to connect to Internet.

(14) RFID tag must not respond to a query issued less than
a threshold distant to protect airlines proprietary data.

(15) While taxing, for a period of time, an airplane is
allowed to be associated with two access points for
smooth handover.

A.4. AIRPORT OPERATION RELATED
These policies are specified to enable efficient resource
allocation at the airport.

(16) Technology based requirement. Examples:

• Airplane using WiFi technology must not use
Terminal T1.

• Airplane using Cellular technology must use Gates
G1-G5 at Terminal T2.

o Airplane using WiMAX must use runway
R1 for takeoff.

(17) Airport layout based requirement. Examples:

• Airplane using Gates G10 to G20 must use
WiMAX technology.

• Airplane using runway R2 must not use WiMAX
technology.

• Crew at tarmac below Gates 30-35 must not use
Cellular.

(18) Time-based (network/airport demand based)
requirement. Examples:

 11

• Airplane using the airport computer network at
terminal T3 between time t1 to time t2 must use
WiMAX.

• Airplane using the airport computer network at
Gates G40-G45 must not use WiFi.

BIOGRAPHY
Mirko Montanari is a PhD student
in Computer Science at the
University of Illinois at Urbana-
Champaign. His research interests
are in the areas of security and
distributed systems. He received his
Laurea Specialistica degree (MS

degree) in Computer Engineering from the University of
Bologna, Italy.

Roy Campbell is the Sohaib and
Sara Abbasi Professor in the
Department of Computer Science at
the University of Illinois at Urbana-
Champaign. Professor Campbell's
research interests are the problems,
engineering and construction
techniques of complex system
software. Security, continuous
media, and real-time control and

pose a challenge, especially to operating system
designers. Ubiquitous, distributed and parallel systems
require complex resource management and efficient
implementations. Object-oriented design aids organizing
software, supports customization and offer new
approaches to building dynamic distributed systems and
middleware. Over time, research in system software has
become increasingly important and the construction of
complex system software a focus for advanced software
engineering techniques. His current research projects
include security assessment of SCADA networks,
operating system dependability and security, active
spaces for ubiquitous computing, and the design of peer-
to-peer distributed operating systems.

Krishna Sampigethaya is an
advanced technologist at the
Boeing Research & Technology,
Bellevue, WA, working on
performance assurance of cyber-
physical systems, NextGen,
vehicular networks, and the smart

grid. He received MS and PhD in electrical engineering
from the University of Washington. He was a program
committee member for the 2008 NITRD workshop on
Transportation CPS, co-chair of the 2009 Army
Research Office CPS security workshop and co-
organizer of SAE 2010 Future ATM Technology
Symposium. Dr. Sampigethaya is technical area chair for
aviation cyber security at the 2009 and 2011 SAE
AeroTech, trustworthy aviation information systems area
at the 2010-2011 AIAA Infotech@Aerospace. He is a
IEEE and AIAA member. He is the founding chair for
the SAE aviation cyber security technical committee and
co-editor for the Proceedings of the IEEE special issue
on cyber-physical systems.

Mingyan Li is an advanced
computing researcher at Boeing
Research and Technology (BR&T)
and an affiliated assistant professor
in the department of Electrical
Engineering (EE) at University of
Washington (UW). She received

her Doctor of Philosophy degree from Network Security
Laboratory in EE department at UW in 2006. Her
research interests are in the area of network security and
user privacy, with applications to next-gen airport
wireless systems, sensor networks, RFID applications,
software distribution systems, medical security systems,
vehicular ad hoc networks (VANET), distributed
storage, and secure multicast. She was leading Boeing-
Siemens collaborative projects on wireless and RFID
security. She is a recipient of BR&T silver teamwork
award 2008, an IEEE PIMRC best student paper award
2007, the UW EE departmental Chair's Award 2006, and
the outstanding Society of Women Engineer (SWE)
Graduate award 2003

ACKNOWLEDGEMENTS
Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors, and should not be interpreted as the views of The
Boeing Company.

