
Attack-resilient Compliance Monitoring for Large

Distributed Infrastructure Systems

Mirko Montanari, Roy H. Campbell

Department of Computer Science

University of Illinois at Urbana-Champaign

{mmontan2, rhc}@illinois.edu

Abstract—The security of monitoring systems is critical for
maintaining an accurate view of the state of infrastructure
systems such as enterprise networks and critical infrastructure
systems. A malicious user that controls a monitoring system
has the ability of delaying the detection of security attacks and

sabotages, and can acquire information about the infrastructure
that can enable additional attacks.

In this paper we present a distributed architecture that in-
creases the resilient of monitoring systems to attacks against their
availability, integrity, and confidentiality. Our approach is based
on distributing the knowledge of the state of the infrastructure to
a large number of non-dedicated servers, so that the compromise
of any limited number of hosts does not cause a compromise of
the entire monitoring system. We present an algorithm able to
integrate information across the distributed servers to evaluate
complex security policies. We analyze the security properties of
our approach, and we experimentally evaluate the performance
and the resilience of our architecture. We show that, compared
to current solutions, our solution increases the resilience of a
monitoring system while reducing the load on each monitoring
machine.

I. INTRODUCTION

Monitoring the compliance of infrastructure systems to

security policies has been identified as a critical part of the risk

management process of large organizations [1]. Infrastructure

security policies define the proper operational conditions of the

infrastructure. Their violation indicates that the infrastructure

is operating in undesirable conditions that could create op-

portunities for attacks. Organizations specify a large number

of infrastructure security policies for controlling the config-

urations of the network systems they manage. The National

Institute for Standard and Technology (NIST) provides a large

list of security policies for government systems [2], and the

North America Electric Reliability Corporation (NERC) pro-

vides security policies for organizations controlling power grid

assets [3]. For example, NERC policies specify that critical

assets need to be placed in electronic security perimeters, and

that all access points of the infrastructure need to be monitored

and logged. Online compliance monitoring allows detecting

quickly when changes in configurations, failures, or operator

errors create policy violations.

As policy-compliance monitoring systems become a critical

part of the infrastructure, they also become a new target for

attacks. Malicious users controlling a monitoring system could

hide policy violations to sabotage the infrastructure operations

without being detected and to enable further attacks. In this

paper we introduce an architecture for monitoring policy

compliance in large infrastructure systems able to operate

with limited security consequences even when part of the

monitoring servers are under the control of malicious users.

We distribute the compliance validation process to a large

number of servers so that the compromise of any limited

number of servers has little consequences on the integrity and

the confidentiality of the monitoring system. Intuitively, we

exploit the fact that the detection of each specific violation

of a policy requires to integrate only a limited amount of

information about the infrastructure state. Our architecture is

able to tolerate compromises on monitoring elements with

limited effects on the monitoring capabilities and on the

knowledge that a malicious user obtains about the system.

Validation of complex policies is performed by integrating

information redundantly across a large number of hosts while

maintaining low processing, memory, and bandwidth loads on

each of them. Because of this property, we can substitute a

small number of machines exclusively dedicated to monitoring

with a large number of non-dedicated machines such as web

servers and file servers.

The contribution of the paper is summarized as follows.

1) We present an architecture for compliance monitoring

that tolerates attacks on its components.

2) We introduce a distributed algorithm for validating com-

pliance which distributes the load across a large number

of non-dedicated servers.

3) We perform a security evaluation and an experimental

evaluation of our architecture and algorithm.

The rest of the paper is structured as follows. Section II

describes the relation between this work and previous work

in the area. Section III introduces policy compliance and our

representation of state and policies. Section IV presents our ar-

chitecture and algorithm. Section V provides our experimental

results. Finally, Section VI concludes our work.

II. RELATED WORK

The introduction of compliance requirements by govern-

ment entities has been driving industry and research in the

development of automated tools for assessing compliance. A

recent report from NIST specified that continuous monitoring

of the security and compliance of the infrastructure is a

critical part in the security of US government systems [1]. The

North America Reliability Council (NERC) published several

policies that specify allowed configurations of devices that

are part of the US power grid. The Payment Card Industry

Data Security Council published standards to reduce exposure

to compromises for organizations managing payment card

data [4].

While the overall process of compliance-validation is based

on periodic manual auditing, several tools have been intro-

duced by the industry and the research community for partially

automatic this process. NIST published standards for formally

specifying security policies [2] and for creating tools that

monitor compliance. However, such tools only analyze the

configuration of single machines and are not able to monitor

for policies which require aggregating information across

several machines. Vulnerability assessment tools [5] are able

to scan the network, identify vulnerable software, and can use

attack graph [6] to evaluate the impact of such vulnerabilities

on the security of the system. Our system is able to obtain such

information and use similar algorithms for the computation of

the impact of the vulnerability in the system. However, the

network vulnerability scanner architecture is based on a few

trusted servers that perform the monitoring. The compromise

of one (or more) of such servers could compromise the

robustness of the assessment process.

Previous work proposed another architecture for the moni-

toring of compliance based on the delegating of the monitoring

tasks to end-nodes [7]. Such a system is still based on a limited

number of redundant servers for aggregating information: the

compromise of such server would reveal all information about

the state of the system and could hide violations.

III. POLICY COMPLIANCE

Managing the security large-scale infrastructure systems

such as enterprise network systems, airport systems, or power

grid systems is a complex task because of the large number

of devices and the large number of possible configurations of

the system. The definition of infrastructure security policies

can simplify the management by providing a base set of rules

that needs to be respected at all times in the configurations

and the state of the infrastructure. For example, security

policies in enterprise network systems can define the type

of communications allowed between different parts of the

network or the programs that it is possible to run on each

machine. Additionally, policies can specify conditions that

represent correct or incorrect behavior of the system. For

example, a policy in an airport system can specify that aircrafts

are expected to connect to the airport wireless network upon

landing for downloading software updates and for uploading

aircraft heath data.

Violations of policies have consequences on the security,

reliability, and efficiency of the infrastructure. Violations of

enterprise security policies might open the system to attacks

(e.g., by allowing unauthorized programs to be run on critical

machines), and violations of other policies might reduce the

safety of the infrastructure (e.g., undetected errors in the air-

craft connections could delay maintenance operations). While

compliance to a specified set of policies cannot guarantee

security, it still provides a minimum level of security to the

infrastructure by providing protection from attacks that would

have been avoidable had proper security measure been taken.

Checking for compliance to policies requires integrating

information across several devices. For example, the airport

policy we presented requires integrated information about

the position of the aircraft provided by onboard devices and

information provided by airline applications. An enterprise

policy that requires computing attack graphs to detect devices

that can be compromised needs to integrate information about

all hosts in the network. The rest of the paper describes how

integrating this information does not necessarily require stor-

ing all information in a central location but can be performed

redundantly across a large number of machines.

A. Infrastructure Policy

Logic, in particular Datalog, has been used extensively

for representing the heterogeneous information that composes

the security state of infrastructure systems. Zahid et. al. [8]

represents state and policies using first-order logic. Ou et. al.

use Datalog for representing attack-graphs based policies [6].

In this work we use the Resource Description Framework

(RDF) for modeling the state of the system, and we use

Datalog rules for representing policies [9].

The validation of each policy requires acquiring specific

information about the state of the system. In our architecture,

entities called sensors collect such information and send it

a set of monitoring servers for analysis. Atomic information

about the state and configurations are represented using RDF

statements. Each RDF statement provides information about a

specific resource, called subject of the statement. The type

of information is identified by the second element of the

statement, the predicate. The third element, called object

identifies either a constant value (called literal) or another

resource. For example, the fact that a device d is running a

software s is represented by the statement (d, runs, s).
Infrastructure policies define constraints over the admissible

combinations of statements that are present in the state. We

express policies as Datalog rules. A rule is composed of two

parts, a body and a head. The body specifies a condition over

the state, and the head specifies the conclusion that can be

drawn when the body of the rule is true. This conclusion can

either be the fact that a violation is present, or the fact that

another statement about the state is true.

The body and the head of the rule are expressed as a

conjunction of statement patterns. A statement pattern is a

statement where subject or object are variables. We use the

standard definition of Datalog unifications for defining when a

statement pattern matches a statement. i.e., a set of statement

patterns matches a set of statements if there exist a substitution

of the variables in the statement patterns that makes them

equals to the set of statements.

1) Example of Infrastructure Policies: In the aerospace

domain, the increasing reliance of modern aircrafts on the

airport infrastructure requires such systems to operate securely,

safely, and efficiently. Infrastructure policies can be used to

monitor that the infrastructure is operating in a good state.

For example, the new e-Enabled fleets [10] require services

that need to be provided by the airport infrastructure, such

as Internet connectivity, aircraft software update services, and

access to maintenance services. Several examples of policies

can be defined in this context. We can mandate that approach-

ing airplane must establish wireless link after they land (i.e.,

weight-on-wheels condition) so that software updates can be

downloaded as following:

(A,landed,R), (R,part_of, AIR), (N, part_of, AIR),
¬(A,connected_to, N) → (policy1,violation, A),

(1)

where the statement (A, landed, R) indicates that the air-

craft A landed on runway R, the statement (K, part_of, J)
indicates that an entity K is part of the system J , and the

statement (A, connected_to, N) indicates that the system A
is connected to a network N . The consequence of the rule,

(policy1, violation, A) indicates that a violation of policy1
has been detected and it involves the aircraft A.

Additionally, we can monitor that airplane must be parked at

gate when accessing certain airline applications, as following:

(A,logged_on, P), (P,provided_by,M),
(M,part_of, airline), (P,use,gate_restricted),
¬(A,located_at, L), (L,location_type,gate)
→ (policy2,violation, A),

(2)

where the statement (A, logged_on, P) indicates that the

aircraft A is accessing application P , (P, provided_by,M)
indicates that the host M is running the application P ,

(A, locate_at, L) states that the aircraft A is located at loca-

tion L. The last two statements, (L, location_type, gate)
and (P, use_restricted, gate) state that L is a airport gate,

and that P can be used only by an aircraft located at the gate.

All these example policies require integrating information

across multiple devices for assessing compliance. The first

policy requires integrating information from the aircrafts or

the control tower with information generated by network

monitoring devices, while the second policy requires inte-

grating again information from the aircraft and information

generated by airline applications. However, none of these

policies requires access to the entire state of the system. For

example, both policies can be validated independently for each

aircraft: all devices that have information about a specific

aircraft send information to the same node. Each single group

of information is independently sufficient for assessing all

possible compliance validations in the system. Our architecture

takes advantage of this intuition for distributing the validation

redundantly across multiple hosts.

IV. ROBUST MONITORING ARCHITECTURE

The monitoring process is composed of two parts: acquiring

information about the state of the system, and integrating it

to validate compliance to the policies. In our architecture, two

different entities perform these tasks. Sensors monitor the state

of the system, and monitoring servers collect information and

validate compliance.

Sensors are software agents or hardware devices that acquire

the information used for assessing policy compliance. For

example, a software agent can act as a sensor for acquiring

information about the running processes in every machine.

In an airport infrastructure, software agents and hardware

devices located on aircrafts provide information about the

aircraft location, while applications running on the airline

servers provide information about access. To assure security

and reliability, each software agent sends information to

several monitoring servers. Additionally, redundant sensors

should monitor the different parts of the state of the system

(e.g., host-based monitoring and traffic flow monitoring can

be used to detect communications between hosts).

Monitoring servers keep a local knowledge base that stores

their partial view about the state of the system. Such knowl-

edge base contains the information received from the sensors

and partially analyzed information provide by other monitor-

ing servers during the compliance validation process. At a high

level, the validation is performed by creating aggregation trees

that connect servers which contain information useful for the

detection of each violation. At each step of the aggregation,

a portion of the policy is verified and result of the partial

validation is forwarded to other monitoring servers.

The structure of the communication between monitoring

servers is define by an analysis of the policies of the in-

frastructure. To distribute the load of the validation across

multiple servers, we distribute the task of validating each

resource (e.g., a process, a device, a user) to a redundant set of

monitoring servers. All policy validations that involve one of

these resource are handled by such a set of monitoring servers.

A compilation process transforms policies into multiple

redundant aggregation trees. The nodes in the trees are called

rendezvous points and represent resources. The edges represent

a need of exchanging information between the monitoring

servers associated to each resource. State information is sent

from the leaves to the root. At each step, rendezvous points

perform partial checks of the policy. Messages are forwarded

toward the root only if they are relevant for detecting policy

violations. When the messages reach the root, we have all

information to validate compliance for the devices that are

part of the tree. Once a violation is detected, the root sends

a message to a system under the control of the administrators

so that remedial actions can be taken.

The redundancy in the aggregation makes the compliance

validation process resilient to a limited number of compro-

mises of the monitoring servers, and reduces the impact of

larger compromises. The distribution of the resources across

multiple monitoring servers reduces the amount of information

sensors

rendezvous

point

Monitoring servers

aggregation

tree

Fig. 1. Example of an instance of the Dora architecture with no replication.
Devices are represented by circles and send information to rendezvous nodes.
Rendezvous points are shared by multiple trees, when possible.

about the infrastructure state that is revealed when monitoring

servers are compromised.

A. Distributed Online Rule Analysis Algorithm

The architecture of our system is shown in Fig. 1. The

Distributed Online Rule Analysis (DORA) algorithm coordi-

nates the exchange of information across monitoring servers

for obtaining a complete assessment of the policy violations

present in the infrastructure. Given the Datalog rules repre-

senting policies, it computes a set of aggregation trees across

monitoring servers that integrate all the information required

for detecting violations.

The algorithm is composed of two phases executed on every

monitoring server: compilation and execution. The compilation

phase transforms the set of rules into rule elements and state

triggers. Rule elements represent the computation performed

in each monitoring server, and communication elements rep-

resent the information exchanged across servers to ensure the

completeness of the assessment.

During the execution phase, rule elements are added to

each monitoring server’s knowledge base to perform local

inference, and communication elements are used by each

monitoring server for selecting the statements to share and

for identifying the rendezvous point to use as a destination

for each of these statements. The communication and naming

layer is provided by a DHT system. We use a secure DHT

system to protect the communication layer from compromises.

Every time that a sensor sends new statements to one

of the monitoring server, such statements can trigger new

local inference and new communications. These updates are

propagates across the aggregation trees and update the current

compliance state of the infrastructure.

1) Compilation Phase: The compilation process converts a

policy into a set of rule elements and a set of state triggers.

A state trigger is a tuple (q,D) composed of a persistent

query q over the local state of the device, and a variable

D as destination pattern which must appear in the result of

the query q. During execution, a state trigger performs the

persistent query q to the local state and sends all its updates

to the rendezvous points indicated by the value assigned to the

Fig. 2. Conversion of Rule 2 into the bipartite graph.

variable D of each tuple in the result. The local rules and the

state triggers are added to every device and provide the only

policy-dependent elements required during execution.

The conversion goes through three steps. First, we explicitly

represent the relation between rendezvous points and statement

patterns by representing the rule as a bipartite graph. We

label each edge with a number that represents the estimated

number of messages sent or received by the rendezvous points.

Second, we convert the bipartite graph into an aggregation-tree

pattern by choosing a root and computing a spanning tree.

Each choice of the root creates aggregation trees that differ

on the resources that are used as rendezvous points. We select

the tree that minimizes our cost function. Third, we convert

the aggregation-tree pattern into local rules and state triggers.

The first step of the algorithm represents the relation be-

tween statement patterns and possible rendezvous points. We

create a bipartite graph composed of two types of nodes:

variable nodes for variables or resources, and statement nodes,

which represent statement patterns contained in the policy. For

each variable or resource in the policy, we create a variable

node. For each statement pattern, we create a statement node.

If a statement node uses a variable or resource as subject or

object, it is connected to the corresponding variable node with

an arc. Fig. 2 shows an example of such a bipartite graph.

The second step is the conversion of the bipartite graph

in an aggregation tree. We select a variable node as root

and we create a spanning tree. The selection of the root

node can be performed using several heuristics like expected

communication costs or expected amount of information that

needs to be maintained in each host. However, for the scope of

this paper, we choose as root the smaller node in lexicographic

order. An example of aggregation tree is shown in Fig. 3.

The last step is the conversion of the aggregation tree into

the rule set and the state triggers. We recursively perform a

deep-first visit in the aggregation tree starting from the root.

Statement nodes are converted into state triggers (q,D) by

using their statement pattern as query q and the name of the

parent as destination pattern D. Variable nodes are converted

into local rules which have a body composed of the statement

patterns of the children, and a state trigger that delivers the

Fig. 3. Aggregation tree with root P generated from our example rule. Circles
are devices sending state updates, square are rendezvous points. A different
tree is generated for each pi ∈ P

consequence of the rule to the rendezvous point up in the

hierarchy. At the root, the state triggers send information to

the network administrators. The pseudo-code of the algorithm

is shown in Algorithm 1.

Algorithm 1 Pseudo-code for the Dora compilation algorithm

n ∈ V ∪ S {visited node}
p ∈ V ∪ S {parent node}
r ∈ V {parent resource node}
G := (V ∪ S,A) {G is bipartite graph}
addquery(q,n): query q sending data to rendezvous n
addrule(q, p, h): body q, head predicate p, head object h

function build(n, p, r,G)
if n ∈ V ∧ p 6= ∅ then

addquery(p,n)
Q = {};
for all (n, v) ∈ A do

G′ = (V \ n ∪ S,A \
(n, v))
q = build(v, n, n,G′)
Q = Q ∪ q
addquery(q,n)

end for
prule = random()
addrule(Q,prule, r)
pattern = (, prule, p)
return pattern

end if

if n ∈ S then
E = {(v, n)‖v ∈ V }
G′ = (V ∪ S,A \E)
return build(v, n, r,G′)

else
E = {(v, n)‖v ∈ V }
G′ = (V ∪ S,A \E)
Q = {}
for all (n, v) ∈ A do

q = build(v, n, n, G′)
Q = Q ∪ q

end for
prule = random()
addrule(Q,prule, violation)
return ∅

end if

The body of the rule created at the variable node is formed

by the patterns of the children statement nodes, and the

patterns generated by the consequences of the rules at the

variable nodes two steps down in the tree. The consequence

of the rule represents the result of the partial evaluation of

the policy. The head of the local rule contains statements

that keep track of all information about the matching that

need to be forwarded to higher levels of the tree. If only

true/false information needs to be preserved, then the blank

node contains a single predicate with a true/false object. If

more information about variables in the matching needs to

be preserved, then the blank node has predicates to preserve

this information. For example, a rule (A, p1, B), (B, p2, C),
(C, p3, D) → (C, violation, true) can be processed by two

rendezvous nodes associated with the values of the variables

B, and C. When analyzing the rendezvous node B, we

generate a rule (A, p1, B), (B, p2, C) → (rule1, value1, C).
At the rendezvous node C, the rule we generate is

(rule1, value1, C), (C, p3, D) → (C, violation, true).
2) Execution Phase: All rules and state triggers generated

by the compilation phase are added to the KB of all devices.

We do not need to determine a-priori which devices are going

to be part of an aggregation tree: each device need to only

reacts to the messages that are sent to it.

During the execution phase, sensors send their state and

state update information to monitoring server. A deployment

parameter, called replication factor defines the number of

monitoring servers at which information is delivered. For

a replication factor f , sensors send their information to f
monitoring server. Each receiving server adds this information

to its local knowledge base and considers each state trigger

(q,D). For each trigger, we perform the query q on the

state KB and we send each returned tuple to the rendezvous

points identified by the value of the variable D of the tuple.

For a rendezvous point D = u, the update message is sent

to f redundant monitoring servers identified by a family of

functions Hi(u) with i = 0, . . . , f − 1. When the KB is

modified, the result of the persistent queries changes and

triggers the sending of update messages to rendezvous points.

When a device receives a state update from at least ⌈f/2⌉
monitoring servers, it adds the received statement to its local

KB. With the new data available, local rules can trigger new

inference, which can create changes in the persistent queries

results. These changes are sent to the respective rendezvous

points according to the state triggers. When the update mes-

sage reaches the root of the tree and a violation is detected,

the notification is broadcasted to all monitoring servers.

At every step of the tree, the DHT routing delivers the

message to the monitoring servers identified by each Hi(u).
Different monitoring servers can act as forwarding nodes for

such messages. These servers maintain a set of KBs, called

forwarding KBs, that keeps track of the messages forwarded

to each of the destinations Hi(i). Failures or the introduction

of new monitoring servers can change the next hop for each

destination. When this happens, the forwarding nodes sends

the forwarding KB to the next hop so that the complete state

can be reconstructed.

Additionally, we need to ensure that the compromise of

a forwarding node cannot compromise multiple aggregation

trees: if a single compromised node is the next-hop in the

routes to the majority of rendezvous points, the aggregation

process for that policy violation is compromised. To avoid this

situation, we uniformly partition the space of the monitoring

servers in f disjoint groups based on the initial digits of the id.

We ensure that each aggregation tree is completely contained

within each of these groups by using a family of functions

Hi(u) that consistently maps Hi and Hj , with i 6= j, in

different parts of the space.

B. Security of the monitoring system

Protecting the security of a monitoring system requires pro-

tecting its availability, integrity, and confidentiality properties.

Compromises of these properties lead to a reduced level of

security of the infrastructure being monitored. In particular, a

compromise of availability allows an attacker to act undetected

in the system. For example, an attacker could disable the

monitoring system and make the infrastructure operate in

unsafe conditions. A compromise of the integrity increases the

capabilities of the attacker: specific violations can be hidden

and the state of the system visible to administrator altered.

Additionally, spurious violations could be generated to confuse

response to emergencies. Compromise of the confidentiality

of the monitoring system provides attackers a view of the

infrastructure configuration and state. This information can be

used for planning complex attacks. We compare the security of

our solution with a centralized replicated solution. We estimate

the effects of attacks and we show that our solution offers

increased resilience to attacks toward the availability, integrity,

and confidentiality of the monitoring system.

We first analyze resilience toward attacks to the confi-

dentiality of the system. We assume an attacker able to

compromise monitoring servers with some effort. To represent

this concept, we assume that an attacker needs to spend an

effort E proportional to the number of servers compromised.

We consider the state of the system composed of s statements.

Such describe r resources, each of them described by a set of

statements sr. We assume that each monitoring server is either

a resource node or a forwarding node in t aggregation trees.

We consider both solutions with a replication factor f .

In a replicated centralized solution, even with one com-

promised server, confidentiality of the state of the system

is completely compromised. i.e., all information about the

system state becomes accessible by malicious users. In the

Dora architecture, compromise of a monitoring server leaks to

the attacker only a limited amount of information: statements

about the resource managed by the server and statements about

the aggregation trees that a have the monitoring server as

a node. We consider two cases: the case in which attackers

desire to obtain as much information as possible about the state

(i.e., attackers searching for possible exploits) and the case in

which attackers target a specific statement about the system

(i.e., targeted attack). In a centralized solution is sufficient to

compromise one of the servers with an effort E for acquiring

the entire state of the system. In our solution the information

about the state is distributed and replicated across monitoring

servers. To reconstruct the entire state, attackers need to be

compromise a number of servers proportional to n/f with a

significantly higher effort of E⌈n/f⌉. If attackers are targeting

a specific statement or a specific resource, the effort required

in both solution is the same: attackers need to compromise

one of the replicated servers with an effort E.

Resilience toward integrity and availability compromises

can be analyzed in a similar fashion. Again, we compare

the two solutions for the case in which attackers targeting

to control as much violations as possible and for the case in

which attackers are targeting to hide or to introduce a violation.

The number of possible violations in an infrastructure

depends on the number of policies and their length. For a

system with n resources and f policies of average length l,
the maximum amount of different violations that it is possible

to generate is fnl (i.e., each possible combination of resources

for the length of the policy).

For the centralized solution, the compromise of a number

of monitoring servers greater than the majority leads to a

complete compromise of the system. Hence, the number of

violations that it is possible to generate or hide goes from 0
for an attacker that does not have control of the majority of

monitoring nodes, to nl for an attacker that has control of at

least c > n/2 monitoring nodes. Hence, an attacker is able to

control nl violations with an effort proportional to ⌈f/2⌉E.

In the Dora architecture, obtaining control of a violation

requires controlling the majority of the rendezvous nodes

managing a specific resource, or the related forwarding nodes.

The effort required to perform this operation is proportional to

⌈f/2⌉E. Introducing an arbitrary violation is more complex,

as attackers need to control all the resources involved with an

effort I of ⌈f/2⌉E in the corner case where all resources are

mapped to the same node, and l⌈f/2⌉E when the l resources

are mapped to different nodes. Controlling the entire set

of violations requires controlling the majority of rendezvous

nodes for all resources. As rendezvous nodes assigned to

different trees are mapped to different servers, the effort for

compromising all violations is proportional to n
⌈f/2⌉E.

In summary, our architecture significantly increases the

effort required for successfully performing attacks that com-

promise large portions of the monitoring systems, while still

providing the same level of protection to targeted attacks.

V. EXPERIMENTAL RESULTS

In this section we measure the ability of our monitoring

system to distribute the load of monitoring across several

machines, and its ability of resisting to attacks directed toward

it. Our implementation of Dora is built using Java 1.5. The

communication layer is based on the Freepastry 2.1 library.

The rule-base reasoning engine is provided by the Jena Se-

mantic Web Framework1.

We tested our rule analysis algorithm on policies taken from

previous work. In particular, we analyzed policies that require

creating attack graphs [6], policies encoding NIST and NERC

rules that require distributed information integration [9], and

policies defined for the aerospace domain [10]. We found that

most policies involve a number of resources between 1 and

5. Even if this number depends on the representation of the

configuration we used, we believe that the choice of different

representations will change this number of only slightly.

We run our architecture in a small network for testing its

functionalities, and we analyze the fundamental characteristics

of our architecture by running our system on top of the

freepastry event-based simulator. We analyze the system’s

behavior when parameters change. To better parameterize the

characteristics of the system, we create a synthetic data set of

configurations and policies. We associate a parameter length

1http:///www.freepastry.org, http://jena.sourceforge.net.

 100

 200

 300

 400

 500

 600

 700

 800

 40 60 80 100 120 140 160 180 200

d
e

la
y
 [

m
s
]

hosts

min-1
min-3
min-5
max-1
max-3
max-5

Fig. 4. Delay in the detection of violations over the number
of servers. We consider a rule length of 3 resources.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

2 3 4 5

d
e

la
y
 [

m
s
]

rule length

dora-max-1
dora-max-3
dora-max-5

Fig. 5. Delay [ms] in the detection of violations over the length
of the policy. We consider a network of 100 hosts.

 0

 50

 100

 150

 200

 250

 300

 40 60 80 100 120 140 160 180 200

a
v
g

 #
 s

ta
te

m
e

n
ts

 p
e

r
n

o
d

e

hosts

dora-1
dora-3
dora-5

centralized

Fig. 6. Statements stored in each server over the size of the
infrastructure. We consider a rule length of 3 resources.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 40 60 80 100 120 140 160 180 200
#

 m
s
g

s

hosts

dora-1
dora-3
dora-5

centralized-5
centralized-1

Fig. 7. Total number of messages in the system as a function of
the size of the network. We consider a rule length of 3 resources.

to policies which represents the number of resources involved

in its evaluation. Policy are expressed as chains of statement

p1(a, b), p2(b, c), p3(c, d) → violation(a, d). Long policies

are representative of complex policies that need to integrate

information across several resources.

A. Performance experiments

We compare the different performance dimensions of our

system with the performance of a centralized monitoring

system. The parameters of the two systems are set so that

each device in the infrastructure communicates with the same

number of monitoring servers. For example, in a triple redun-

dant system for monitoring, each device sends its monitored

events to three monitoring servers. In our architecture, we use

three redundant paths so that each device sends data to three

different monitoring servers.

The first set of experiments measures the overhead in-

troduced by our monitoring architecture. We measure the

overhead in term of memory, communication, and delay.

To quantify the memory overhead, we measure the state

information stored in each monitoring server. For simplicity,

we considered a network with the same number of devices

and monitoring servers. We find that the Dora architecture is

successful in distributing statements across monitoring servers,

and that each monitoring server only needs to store locally

a very limited amount of state information. We show these

results in Fig. 6. Additionally, we measure the communi-

cation overhead introduced by the Dora algorithm. Even if

Dora introduces more message exchanges, we find that the

amount of communication grows linearly with the size of the

infrastructure as in the centralized solution. Additionally, the

overhead introduced by Dora remains acceptable as the load

is distributed across several monitoring servers. These data

are shown in Fig. 7. The delay in detecting messages also

remains in acceptable limits. We measure the minimum and

maximum delay in detecting policy violations for different

network sizes, different policy lengths, and different amount

of replication. The results are shown in Fig. 4 and Fig. 5.

Introducing replication reduces the min and max delay as the

larger number of rendezvous points reduces the possibility that

a few slow communication links slow down the entire process.

B. Security evaluation

The second set of experiments measures the robustness

of our solution to confidentiality and integrity attacks. We

compare our solution to a replicated centralized architecture.

We estimate the robustness of the architecture to confi-

dentiality attacks by measuring the amount of state informa-

tion provided to attackers when a set of random nodes is

compromised. We assume that the compromise of a server

provides attackers all information contained in it (i.e., local KB

and forwarding KB). We measure the amount of information

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25

#
 s

ta
te

m
e

n
ts

compromised hosts

dora-1
dora-3
dora-5

centralized-1

Fig. 8. Number of statements about the state of the system
obtained by the attacker when x nodes are compromised. We
consider a network of 100 hosts and a rule length of 3 resources.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25

#
 v

io
la

ti
o

n
s
 d

e
te

c
te

d

compromised hosts

dora-1
dora-3
dora-5

centralized

Fig. 9. Number of violations detected when x hosts are
compromised. We consider a network of 100 hosts and a rule
length of 3 resources.

leaked as the number of distinct statements acquired by the

attacker. We find that, in the Dora architecture, the amount

of statements acquired grows linearly with the number of

compromised machines. In the centralized system, the entire

information about the state is compromised as soon as one

server is compromised. These results are shown in Fig. 8.

We estimate the robustness of the architecture to attacks

toward the monitoring integrity by measuring its ability to

operate when part of the monitoring machines is compromised.

We focus on hiding violations and we implement compromised

machines as machine dropping application packets so that

statements matching policies are not detected. We perform

a set of experiments where we randomly select monitoring

servers to compromise. The performance of our system de-

grades gratefully as the number of compromised machines

increases. In a centralized architecture, the transition from a

safe monitoring system to a compromise monitoring system

is abrupt. Once the few machines that maintain the replicated

view of the system are compromised, the entire state of

the system cannot be trusted anymore. The results of these

experiments are shown in Fig. 9.

In summary, we show that our architecture provides a little

overhead in each of the machine that are part of the monitoring

system, and increases robustness to compromises.

VI. CONCLUSIONS

We presented a robust architecture for validating compli-

ance to security policies in large-scale systems. The task of

aggregating the system state and validating its compliance is

distributed across several devices so that no single server stores

the entire state of the system, and so that a limited number

of compromised devices cannot affect the validation process

by hiding violations or introducing fictitious violations. Our

evaluation shows how the load introduced in the infrastructure

by the monitoring system is low, and how the robustness to

confidentiality and integrity compromises is increased.

In our future work we will focus on several issues. First,

we will focus on improving the Dora algorithm by introduc-

ing different optimization functions (e.g., reduce information

stored on each node) in the choice of the root node during the

compilation process. Second, our algorithm does not include a

concept of time: causal relations between events are currently

ignored, and this could create a false positives or false nega-

tives for a short period of time. While compliance validation

focuses on long-lived violations and temporary conditions does

not present a problem, a general monitoring system would

benefit from the ability of tracking these relations. Third, we

plan to deploy our architecture in a distributed infrastructure

to validate the results obtained in our simulations.

ACKNOWLEDGEMENTS

This material is based on research sponsored by the Air Force
Research Laboratory and the Air Force Office of Scientific Research,
under agreement number FA8750-11-2-0084. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

This work was partially supported by the Boeing Trusted Software
Center.

REFERENCES

[1] K. Dempsey, A. Johnson, A. C. Jones, A. Orebaugh, M. Scholl, and
K. Stine, “Information Security Continuous Monitoring for Federal
Information Systems and Organizations,” NIST, Tech. Rep., 2010.

[2] Joint Task Force Transformation Initiative, “Recommended Security
Controls for Federal Information Systems and Organizations - SP 800-
53,” NIST, Tech. Rep. August 2009, 2009.

[3] North American Electric Reliability Corporation, “NERC CIP 002-009,”
NERC - North American Electric Reliability Corporation, Tech. Rep.,
2007.

[4] Payment Card Industry Security Standards Council, “Payment Card
Industry (PCI) Data Security Standard,” Tech. Rep. October, 2010.

[5] Tenable Network Security, “Nessus: the Network Vulnerability
Scanner,” 2009. [Online]. Available: http://nessus.org/nessus/

[6] X. Ou, W. Boyer, and M. McQueen, “A scalable approach to attack
graph generation,” in Proceedings of the 13th ACM conference on

Computer and communications security. ACM, 2006, p. 345.
[7] M. Montanari, E. Chan, K. Larson, W. Yoo, and R. H. Campbell,

“Distributed Security Policy Conformance,” in IFIP International In-

formation Security Conference, 2011.
[8] Z. Anwar and R. Campbell, “Automated Assessment of Compliance

with Security Best Practices,” Critical Infrastructure Protection II, vol.
290, pp. 173–187, 2009.

[9] R. H. Campbell and M. Montanari, “Multi-Aspect Security Configura-
tion Assessment,” in ACM Workshop on Assurable & Usable Security

Configuration (SafeConfig), 2009.
[10] M. Montanari, R. H. Campbell, K. Sampigethaya, and M. Li, “A

Security Policy Framework for eEnabled Fleets and Airports,” in IEEE

Aerospace Conference, 2011.

