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Abstract—Monitoring systems observe important information
that could be a valuable resource to malicious users: attackers
can use the knowledge of topology information, application logs,
or configuration data to target attacks and make them hard to
detect. The increasing need for correlating information across
distributed systems to better detect potential attacks and to meet
regulatory requirements can potentially exacerbate the problem
if the monitoring is centralized. A single zero-day vulnerability
would permit an attacker to access all information.

This paper introduces a novel algorithm for performing
policy-based security monitoring. We use policies to distribute
information across several hosts, so that any host compromise
has limited impact on the confidentiality of the data about
the overall system. Experiments show that our solution spreads
information uniformly across distributed monitoring hosts and
forces attackers to perform multiple actions to acquire important
data.

Index Terms—security; monitoring; policy compliance; confi-
dentiality; distributed systems;

I. INTRODUCTION

Directed attacks toward organizations are becoming com-

monplace. While these attacks often use targeted fishing

emails for getting a foothold into the organization, once inside

they require information about network topology, firewalls,

and placement of critical systems to further perpetrate the

attack [1]. Attackers need to identify critical resources, and

malware needs to target systems with specific characteristics in

order to exploit vulnerabilities. Searching for such information

through the network using port scanning or using random

infections of non-critical systems increases the chance of

detecting the malware process [2]. The knowledge of net-

work topology information, configurations, and critical system

placement enables attackers to specifically target sensitive data

and lowers the chance of detection.

Monitoring systems are a perfect target for acquiring such

information. The increased need for situational awareness and

policy compliance require integrating and correlating events

coming from multiple sources. For example, software such as

Splunk [3], Bro [4], and SEC [5] integrate events generated

by logs, by network packet analysis, and by SNMP. However,

while this monitoring helps detect attacks, the integration of

information creates a large target for attacks that, if exploited,

provides an attacker access to a large amount of information

about the system’s state.

This paper presents an algorithm aimed at protecting the

confidentiality of the information produced by the monitoring

system. We take advantage of the fact that the scale of

modern infrastructure systems already requires the use of

several hosts for distributing the load of monitoring (e.g., [6]).

Instead of concentrating information in a single system, we

distribute knowledge about the infrastructure into multiple

monitoring servers that collaborate for detecting violations

of security policies. The centralization of information used

in other monitoring systems relies on the assumption that

securing a single system is simpler than securing multiple

systems. However, recent compromises of critical systems

such as certification authorities [7], targeted attacks [1], and

the presence of zero-days vulnerabilities challenge such an

assumption. For example, the exploitation of a single zero-day

vulnerability in the monitoring server would allow an attacker

to acquire all information about the infrastructure. In our

system, the exploitation of a single monitoring server would

reveal only limited information. Additionally, our system is

able to distribute the load across a large number of servers,

thus enabling policy compliance to scale up to large-scale

infrastructure systems.

We focus our analysis on policy-based monitoring systems.

Many current monitoring systems use policies for analyzing

and for correlating the events collected from the infrastructure.

Such an approach is already used in several applications

(e.g., [5], [4], [8]), and advanced applications of policy-based

monitoring have been proposed for validating the compliance

to regulatory policies such as PCI [9] or FISMA [10]. These

policies are generally called “event correlation policies” as

they express conditions over the logic co-occurrence of events.

For example, the co-occurrence of an IDS event indicating the

detection of an exploit packet and of a vulnerability-scanner

event indicating the presence of a software vulnerable to such

an exploit signifies the possible compromise of a device. The

events used by these systems are generated by a large number

of devices using a variety of sources such as SNMP data,

intrusion detection systems (IDS), and log-analysis tools. In

our architecture, these independent sources of information

send events to a large number of monitoring servers distributed

across the organizations.

We show that by expressing policies using Datalog

rules [11] we can perform a decentralized event correlation

that does not require concentrating events in any single system

for processing. Using Datalog, we describe systems as a set of

resources (e.g., computer systems, software systems, network

connections) and their relations (e.g., a computer system is

running a software program). We analyze the rules to identify



the events that need to be correlated for the identification

of policy violations. We use a resource-based distribution of

information across multiple servers, and we rewrite each Dat-

alog policy in a set of “resource-centric” rules. Each resource-

centric rule correlates information about a single resource in

the system. The results of this process are forwarded to other

servers to be correlated with events related to other resources,

but only if they can potentially contribute to the detection of

a policy violation.

The contribution of this paper is summarized as follows:

1) We introduce a resource-based approach to distribute

policy compliance monitoring across multiple hosts.

2) We present an algorithm for rewriting Datalog rules

and performing a distributed resource-based validation

of complex policies.

3) We analyze monitoring events from real datasets and we

evaluate experimentally the efficiency of our technique.

Results show that our approach provides a 3-fold reduc-

tion of the number of events obtainable by an attacker

when compared to other distributed approaches.

The rest of the paper is organized as follows. Section II

analyzes related work in the area. Section III describes our

model of event co-occurrence for policy-compliance systems.

Section IV describes the adversary models we consider in

this work. Section V introduces our algorithm. Section VI

describes our experimental evaluation. Section VII describes

the limitation of our approach and our future work. Finally,

Section VIII concludes our work.

II. RELATED WORK

Monitoring is a widespread service in modern systems. Most

monitoring systems provide some limited protection of log

data confidentiality. A basic protection of confidentiality is

provided by protecting data-in-transit. For example, syslog-

ng [13] uses TLS to transmit encrypted log data from the

devices and the monitoring servers. However, the encryption

of data-in-transit only leaves data vulnerable: if the monitoring

server is compromised, the attacker has access to all past and

future data.

More advanced solutions provide protection of the data-at-

rest by creating encrypted and tamper-proof audit logs that

can be accessed only by authorized users. One of the earliest

mechanisms has been introduced by Schneier et al. [14]. Their

approach uses one-way hash chains to protect the log files

from modifications. Additionally, logs are encrypted to protect

them from unauthorized access. Other solutions (e.g., Ma

et al. [15]) extend such an approach to provide additional

integrity protection. While these approaches are useful for

protecting the integrity of the event logs and can be used in

conjunction with our algorithm to provide trusted audit logs,

their confidentiality protection is not suited for our scenario: as

event correlation requires performing processing on the data,

events need to be accessible to the monitoring server. Attackers

compromising the server would have access to such data.

The Intrusion Detection System Bro [4] provides a dis-

tributed mechanism for performing event correlation. Com-

munication between Bro nodes is performed on top of SSL

to protect data-in-transit. Correlation between events is per-

formed by programming policies using a pub/sub mechanism.

For example, a distributed IDS cluster built on top of Bro has

been presented by Vallentin et al. [6]. They use a flow-based

hashing for distributing the packet-processing load across the

instances. Inter-flow correlation is performed using the pub/sub

mechanism. While the pub/sub mechanism provides flexibility

in specifying policies and in defining their evaluation, it

provides no guarantees that information about the system is

distributed across nodes. It is up to the programmer to evaluate

policies without creating such an aggregation of information.

The algorithm we present in this work provides a mechanism

for selecting automatically the events that each monitoring

server should receive and send for validating policies. Our

algorithm ensures that potential policy violations are detected

and that information about the system is distributed across a

large number of hosts.

More generally, the problem of protecting the privacy

of log data has also been addressed in the context of

sharing network traces across organizations. Several authors

(e.g., [16] [17] [18] [19]) point out the security problems in

providing access to this type of information to external entities

and propose methods for anonymizing the data. However, such

anonymization methods are not applicable to our case for

several reasons. First, these techniques rely on aggregating

data in a centralized server within each organization for

processing. Second, even if anonymization could be performed

directly on devices, these techniques are specific to network

traces and they are not easily generalizable to the problem of

policy compliance.

Other work focuses on protecting the monitoring system

itself from compromises. For example, recently several secure

monitoring solutions have been using Virtual Machine Intro-

spection (VMI) for protecting the monitoring software from

compromises. They run the monitoring software in a separated

VM co-located with the host to monitor (e.g., Livewire [20])

and they access information by analyzing memory and disk

data without the OS mediation. The security of these systems

relies on the fact that compromising the monitoring VM is

harder than compromising other VMs: the monitoring VM

runs a small amount of software and, hence, exposes a small

attack surface. However, while this assumption holds if the

monitoring VM is used only for acquiring events from a

particular system, it does not hold in the processing servers

that correlate events across entire organizations. Such hosts

need to be accessible through the network to allow devices

to send events to them, and they need to run a substantial

amount of software for validating policies and for providing

network administrators access to data. Our algorithm reduces

the consequences of compromises of such servers.

Previous work provides mechanisms for reducing the num-

ber of events sent to the event correlation nodes by performing

part of the compliance monitoring on each host [21]. Our

work focuses on protecting the remaining part of the events

that cannot be processed locally. Other work introduces an



architecture for compliance that distributes information across

several hosts [22]. However, their approach is limited to RDF

policies and its ability of distributing events in a real scenario

is unclear. We use more general Datalog policies and we

provide a more detailed evaluation of the advantages provided

by distributing data.

Our work is based on the principles of intrusion toler-

ance [12]. We exploit the distributed nature of the problem

of event-correlation to provide a specific intrusion-tolerant

solution.

III. POLICY COMPLIANCE AND EVENT PROCESSING

The management of the security of large infrastructure

systems often relies on defining “policies.” Policies are rules

that specify high-level security requirements and are used

for selecting the proper states and configurations of systems.

In the past few years there has been an increasing interest

for the development of policies that apply to entire classes

of industries. Regulatory entities and industries introduced

classes of policies such as PCI-DSS [9] for credit card indus-

tries, NERC CIP [23] for power grid systems. Several of the

policies specified in NERC CIP or PCI-DSS relate to network,

OS, and application configurations. Their goal is to specify a

minimal level of security to which all systems need to comply.

Network administrators can monitor the compliance of their

systems to these policies by specifying monitoring rules. These

rules validate the configuration of security devices, of server

applications, and of end-host computer systems. For example,

a completely automated monitoring for compliance to one of

NERC CIP policy requires defining rules that detect when

machines are used by the critical devices that control the power

grid, and that ensure that such machines are placed within a

protected electronic perimeter (e.g., firewalls).

A. Monitoring Rules

Monitoring systems generate events when there is an “inter-

esting” change in the state of the system. Examples of events

are the running of a new program, the log-in of a user, or the

detection of a potential attack by an IDS. Monitoring rules

check for the co-occurrence of events to identify when the

system is operating in an undesirable state. Monitoring rules

could define security requirements in a way which is orthog-

onal to the methods used for enforcing security and they can

be used for providing an audit trace. For example, the NERC

CIP policy requirement above might be implemented using

firewall systems. A monitoring rule might monitor for events

that identify critical systems and for events that indicate the

presence of connections from outside the electronic perimeter.

In the rest of the paper we use the terms monitoring rule and

policy interchangeably to indicate an event-correlation rule.

Events in the policy compliance and network management

scenarios generally report information about some “resource”

in the system. A resource can be a computer system, an IP,

a network, a software program, or a user. For example, an

event indicating that a computer system is now connected to

a new network represents a new relation between a resource

representing a computer system and a resource representing

the network. In this framework, monitoring rules express

conditions over resources in the system and their relations.

For example, a security policy might pose a condition that

a resource of type critical system cannot be connected to a

resource of type public Internet.

Datalog provides a logic-based language for representing

resources and their relations. We use Datalog with the addition

of time operators [24] for specifying events and rules. In

Datalog, the type of an event is described by its predi-

cate, while the resources that the event describes are the

parameters of the predicate. For example, a computer host

connected to a network net with an IP ip is represented as

connected(host, net, ip). We assume that all resources

(e.g., host, net, ip) are identified by unique names. Logic

and Datalog have been used by other work to express policies

and to evaluate the security of systems (e.g., [25]).

Events are associated with timestamps in a way similar to

the concept of situation of Amit [26]. Simple events, such

as the detection of a malicious packet from an IDS, are

instantaneous and are associated with a single timestamp.

Complex events represent states in the system and they are

represented by two timestamps: a start timestamp and an end

timestamp (that might be unknown if the system is still in the

state). Rules in this context can express window-based event

correlation and a state-based correlation (i.e., event correlation

that is based on reconstructing the current state of the system).

These two models can express infrastructure policies currently

defined in regulatory documents. The process of validating the

compliance of a network system to the policies is performed

by integrating events in a knowledge base (KB), and by

checking if any of the monitoring rules trigger the presence

of a violation.

For example, we can consider a new event outperimeter

generated when a network is not protected by a firewall.

We express a policy stating that a computer should not be

connected to a network not protected by a firewall using the

following formula:

connected(H,N, IP ),outperimeter(N)
→violation(H,N).

(1)

The parameters of the events in capital letters are variables.

The policy requires checking for the co-occurrence of the

events connected and outperimeter, with the proper pa-

rameters. We support the different types of time relations that

can be defined over time windows. Timestamps are added as

implicit parameters of the events and time specifications are

translated into conditions over events’ start and end times.

IV. ADVERSARY MODEL

We define an attacker, Eve, interested in acquiring more

information about the state and the structure of the infrastruc-

ture system. We assume that the attacker has a limited initial

knowledge and she is interested in compromising the monitor-

ing system to acquire more knowledge. While compromising

the monitoring system is not the only method for acquiring



more information about the system’s structure (e.g., she could

compromise a set of servers in the network and monitor traffic

and communications), we assume that attacking it maximizes

the efficiency of the attack. We assume that the attacker has

knowledge about the monitoring system.

First, we make a few reasonable assumptions about the

capability of the attacker for compromising hosts. We assume

that attackers can compromise monitoring servers, but these

compromises are rare events. We assume that some effort is

required for compromising an additional monitoring server

(i.e., an attacker cannot compromise all servers at the same

time with no effort). Such an effort can represent the difficulty

of acquiring an additional set of credentials, or the difficulty

of compromising another machine located in the network

of the monitoring server so that firewall protections can be

circumvented.

Then, we define more clearly the goals of the attackers.

We assume that the attacker is interested in both the presence

of policy violations and in the raw events collected by the

monitoring system. Policy violations indicate directly possible

venues for attacks, but they are generally fixed quickly by

network administrators. This provides a limited window of

opportunity to attackers. Other data can be used to identify

critical systems or plan the next step of the attack.

The type of raw events interesting to an attacker can change

depending on the type of monitoring performed by organiza-

tions. We consider multiple types of attackers interested in

acquiring different types of information from the monitoring

system. We classify attackers as follows:

1) MAX ALL: An attacker wants to maximize her overall

knowledge about the system.

2) MAX RESOURCE CRITICAL: An attacker wants to

maximize her knowledge about a limited set of critical

resources.

3) MAX TYPE CRITICAL: An attacker wants to obtain

information about specific critical types of events (e.g.,

the presence of a vulnerability on machines)

We evaluate the protection provided by our system to these

different types of attackers, and we show that our resource-

based distribution of events provides a better protection than

other solutions.

V. DISTRIBUTED EVENT-BASED COMPLIANCE

An architecture for event correlation is generally composed

of two types of devices: event sources and monitoring hosts.

Event sources are the end-devices subject to the monitoring.

Information about these devices is provided directly to the

monitoring system in form of events, or is translated into

events from information collected by SNMP queries, IDS

alerts, Syslog, application-log parsing, or network scanning.

When new information about the state of a device is detected,

event sources generate events and deliver them to the mon-

itoring hosts. The monitoring hosts receive these events and

correlate them to identify policy violations. For the type of

policies we consider, a simple way to perform the correlation

process is to integrate information into a single knowledge

base and apply reasoning. If the conditions of one of the rules

are satisfied, a statement indicating the presence of a violation

is generated in the knowledge base.

Distributing the knowledge about the system to multiple

monitoring servers improves the security of the system toward

our attack model for several reasons. First, the fact that a single

compromise is not sufficient anymore for acquiring the infor-

mation searched by attackers forces them to perform multiple

actions. The increased activity gives multiple opportunities

to IDS systems to detect such malicious behavior. To get a

qualitative idea of this effect, we use a simple probability

model. If we consider the probability of detecting an attack

at each action independent pa, we have that the probability

of detection pdt grows with the number of servers k as

pdt = 1 − (1 − pa)
k. With no distribution, this number is

constant and equal to pa.

Second, a centralized monitoring system provides a simple

target for attack. While rare, zero-day vulnerabilities or stolen

credentials can be used by an attacker for compromising

the system and, hence, accessing the entire monitoring infor-

mation. In our distributed approach, we rely on monitoring

servers managed by different organization units. The servers

are placed in different networks and they are managed using

different credentials. In such a configuration, accessing the

entire state of the system requires compromising multiple

credentials or exploiting multiple zero-days vulnerabilities to

communicate with the different servers. Even when a single

monitoring server is compromised, such an exploit has limited

effects on the amount of information obtained by the attacker.

We can qualitatively estimate the effects of this advantage.

For ease of calculation, we consider a simplified attack model

where we assume that an attacker has a probability p of

successfully compromising a host. Such a probability is related

to a simplified notion of the “effort” required for comprising

an additional server: p represents the probability of success

given a constant effort. In the centralized case, the probability

pc of compromising the central server is equal to p and

represents the probability that the entire knowledge about the

system is compromised. In our case, an attacker that wants to

have access to the information needs to compromise multiples

servers. We call pd the probability of compromising at least

k servers over the n monitoring servers, and we define it as

follows:

pd =
n
∑

i=k

(

n

i

)

pi(1− p)(n−i) (2)

Distributing the information across n servers is better than

centralizing it if pd < pc, i.e., if the probability pd of

compromising at least k servers containing the information

searched by the attacker is lower than the probability pc
of compromising the centralized server. To maximize the

difference between the pd and pc we need to have an high

value of k: we need to force attackers to compromise multiple

machines to find the information they need. Such a number

k does not need to be very large: if we have 20 monitoring



servers and we consider a probability p = 0.01 for an attacker

to compromise one of the monitoring servers, a value of k = 3
leads to a probability pd = 0.001. This value is robust to

changes in probability p. For example, we can consider the

common belief that “securing one server is easier than securing

multiple machines.” To analyze its effects, we can assume that

compromising the centralized monitoring server is twice as

hard as compromising one of the monitoring servers. Even in

this case, if we take a probability pc = 0.01 and a probability

of compromising one of the monitoring servers as p = 0.02,

the probability pd with k = 3 is 0.007. With k = 4, this

probability goes down to 0.0006.

Hence, while distributing the information increases the

attack surface and might make finding one single vulnerable

monitoring server more likely, attackers need to compromise

multiple machines to acquire the information relevant for their

attacks. The multiple steps of the attack make it easier to

detect and less likely to succeed completely. Based on this

observation, we build our policy-based monitoring system

so that information is distributed uniformly across several

monitoring nodes. Our experiments show that we can maintain

the value k large for the attack models we consider.

The process of matching events within each monitoring

host is performed by a service called “broker.” A broker is

a software service that can run in a dedicated machine or can

be co-located with other services. Each broker receives events

related to a limited subset of the resources of the organization.

They use our algorithm for exchanging information and, hence,

for finding all violations presents in the system. In this way,

event load and information about the system are distributed

across a large number of hosts. Resources are assigned to

brokers at random, so that no single host concentrates the

knowledge about the resources of a critical organization unit.

Each monitoring server can subscribe to violations of specific

rules or to violations involving specific resources. These

subscriptions are distributed across brokers. Once a broker

finds a violation, it delivers a notification to the subscribed

monitoring servers. We limit the amount of subscriptions

that each server can submit. While communication between

brokers is necessary, such communication is limited only to

the event-correlation service. Other services can be isolated

through firewalls to reduce the attack surface. An architecture

supporting our algorithm is shown in Fig. 1.

A. Distributed Event Correlation Algorithm

Our distributed algorithm defines 1) how events are dis-

tributed across brokers and 2) what information needs to

be shared across brokers to verify compliance. As policy

compliance policies define conditions over resources and their

relations, we base our algorithm on resources.

We use the intuition that events taking part in the violation

of a monitoring rule are related to each other as they provide

information about a limited set of resources that, together,

create the violation of the policy. For example, we can consider

a policy that specifies that a user in a computer lab should not

be logged on two machines at the same time. A monitoring
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Fig. 1. Architecture of a policy-based event correlation system supporting
our algorithm. Devices send events to different brokers depending on the
resources involved in the event. The monitoring servers interact and identify
violations by correlating events in a distributed manner. Each server maintains
limited information about the overall state.

system could generate an event when a user logs into a

machine and when the user logs out. A violation would

be represented by two logins of the same user on different

computers. We can validate compliance by integrating events

about the same user on the same broker. Different users can

be managed by different brokers without limiting the ability

of the system to detect violations. We generalize this intuition

to complex policies by identifying events that share resources.

We partition the process of validating policies by resources.

Our algorithm validates compliance by aggregating events in

a series of steps. Each step correlates events related to a

single resource. If the single-step correlation identifies that

the resource can potentially contribute to a violation, we send

a summary to the next step so that it can be correlated with

additional resources.

We distribute resources uniformly across brokers using a

hash function. If the entire policy is defined on a single

resource r, then the policy is validated completely in the broker

managing r. Events about r are directly delivered to the broker

and inserted into a local knowledge base. For example, we

can take the resource hosta (associated to a broker x) and the

policy critical(A), poweroff(A) → violation. The two

events critical(hosta) and poweroff(hosta) are delivered

to the broker x and inserted in its local knowledge base. The

knowledge base matches both events and finds a violation. It is

easy to prove that if two single-resource events are correlated

by a policy, both events are always sent to the same broker.

When events are related to multiple resources, the problem

becomes more complex. For example, a policy that relates IDS

events with the presence of vulnerable programs running on

a computer system requires integrating events about several

resources such as computer systems, software, and specific

network flows. In general, events involved in a violation

cannot be related to a single resource. For example, an

event could state that a computer system hosta is running

a program runs(hosta, p) that is untrusted untrusted(p).
Another event could specify that a system hostb is criti-



cal for the system critical(hostb). A third event could

state that there is a connection between hosta and hostb,

connection(hosta, hostb). Even if these events are related

to each other, no single resource is shared across all of them.

B. Rule Rewriting

Our algorithm performs the distributed resource-based cor-

relation by rewriting monitoring rules. We analyze a policy

and create an equivalent set of rules that we call resource

ruleset. Each rule requires information about a single re-

source and represents a partial violation of the policy. If

a partial violation of the policy is found, a new event is

generated. We forward the event to the broker managing

one of the resources connected to the potential violation.

For example, a policy could specify that there is a violation

if a machine connected to an internal network receives a

connection directed to a vulnerable program. We represent this

policy as connected(H,N), internal(N), runs(H,S),
vulnerable(S), conn(H,S, IP ) → violation(H,S, IP ).
We can rewrite the policy as follows:

runs(H,S),vulnerable(S) →partialS(H,S)
internal(N),connected(H,N) → partialN(H)
partialS(H,S),partialN(H),conn(H,S, IP ) →

violation(H,S, IP )

(3)

The first rule relates events about the resource identified by

the value of the variable S. The second rule relates events

about the resource identified by the value of the variable N .

The third rule relates the partial information from the previous

rules with events about the resource H . The conclusions of

the first two rules are events of type partial representing a

partial processing of the original rule. This new set of rules

generates the same statements violation(H,S, IP ) as the

original statements, but it is formulated as a sequence of rules

that filter events in different steps.

As the body of each new rule relates events about a

specific resource, we can find all of its conclusions by

aggregating in the same broker all events about such a

resource. For example, if the two events internal(net1)
and connected(H,net1) (for all H) are sent to the broker

associated with the resource net1, such a broker is able to

compute all the couples of resources (net1, H) that match the

body of the rule. We summarize the partial evaluation with

the statements partialN(H). Changing the value net1 (i.e.,

value of the variable N ) changes the broker in charge of the

correlation. For example, if we consider N = net2, the two

events internal(net2) and connected(H,net2) are sent

to a different broker associated with the resource net2. The

partial conclusions computed by each broker are forwarded

to the brokers managing the resource identified by the value

of the variable H of partialN . On the brokers associated

with the different values of the variable H , we perform the

same process and we integrate the partial events partialN ,

partialS, and the event conn. Using our algorithm, brokers

share data only if such an interaction is necessary for detecting

a possible violation.
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Fig. 2. (a) Policy graph. Dashed lines are added during the conversion
process; (b) Policy tree generated by choosing H as root. Dotted lines are
graph edges removed during the conversion process.

1) Basic Algorithm: The process of rule rewriting starts

with the identification of the resources used in the rule. We

represent this information in a policy graph. The policy graph

is a bipartite graph where one set of nodes represents variables

and constants used in the rule, and the other represents

predicates. We create an edge between a predicate node and a

variable node if the predicate contains the variable. A policy

graph for an example policy is shown in Fig. 2(a).

The policy graph shows the relation between variables and

events. If the graph is not connected we modify the policy by

adding a common fictitious resource that connects the two

parts of the policy. However, we believe that unconnected

polices are rare as they would be the equivalent of a SQL

join of two tables without a “where” condition.

Using the graph, a policy is rewritten as a resource ruleset

in two steps. First, we choose an order for the correlation

steps by computing a spanning tree of the graph that we call

policy tree. Then, we generate the resource ruleset from the

tree. As the root of the spanning tree represents the final step

of the correlation process, we choose the root to be one of

the resources that appear in the final violation notification

message, so that information about such a resource is readily

available for creating the notification. Fig. 2(b) provides an

example of the conversion of a policy graph to a policy tree.

The steps necessary for such a conversion are as follows.

1) We remote variable nodes connected to only one predi-

cate node. In Fig. 2(a), we remove the node IP .

2) We explicitly represent the relations between resources

by adding edges between variable nodes. We create a

new edge between variable nodes of distance 2 (i.e.,

we ignore predicate nodes and we connect directly

neighboring variable nodes). In our example of Fig. 2(a),

we mark such edges with dashed lines.

3) We compute the spanning tree by selecting a root and

by removing redundant edges. For each predicate node,

we maintain only one edge. We select the edge to ensure

that each variable node is connected to at least one event

containing a reference to the variable node’s parent. In

Fig. 2(b), we mark the removed edges with dotted lines.

This transformation connects each predicate node (i.e.,

events) to a variable representing one of the resources con-

tained in the event. Events are forwarded to the broker

managing the resource represented by the value of the variable.



For example, we can take a predicate connected(H,N) with

an edge to N . An event connected(host1, net1) is forwarded

to the broker managing net1. For the rest of the section we

indicate with N the resource associated with the value of the

variable N .

A broker managing a resource N can perform a partial

matching of the policy. For each variable node, we create a rule

of the resource ruleset by considering the incoming edges. At

the lower heights of the tree, all incoming edges of a variable

node are connected to predicate nodes. These predicate nodes

all share the same variable H . For example, the body of

the rule associated with the variable node N in Fig. 2(b)

is internal(N), connected(H,N). For a violation of the

policy to exist, the variable N must have the same value on all

predicates contained in the policy. As the broker managing N
receives all events that share the same value for the variable,

the partial matching is complete. The head of the partial

rule is a predicate that has the variables used in the partial

rule as parameters. In this case, the result is encoded with

partialN(H,N). This predicate is treated as a new event,

and it is forwarded up in the tree. In our example, the event is

sent to the broker H. Step 3 in the conversion of the graph to

the tree ensures that the broker always has at least one event

that carries both the information about the current resource

and about the resource one level higher in the tree.

A variable node can have incoming edges connected to other

variable nodes. These edges are considered as connected to

events representing the partial execution. In our case, the node

H is associated to the rule partialS(H,S), conn(H,S, IP ),
partialN(H,N). If the variable node is the root, the rule

is directly associated with the presence of a violation. When

multiple policies are present, each policy uses a different name

for the partial execution predicates.

During the execution of this algorithm there is no single

broker managing the resolution for an entire policy: depending

on the resources mentioned in the events, different brokers are

in charge of the different steps of the aggregation and of the

final identification of violations.

2) Remove unnecessary information: We remove unnec-

essary data from partial execution statements to reduce the

amount of information sent to other brokers. If a variable

is not used anywhere else in the rule, we can drop it from

a partial statement without affecting the equivalence to the

original policy. For each variable node V , we build a set of

variables we call shared set. The shared set is constructed by

removing the subtree of V from the policy tree and by taking

all variables used in the remaining tree. We drop from the

partial execution statements of V the variables that do not

appear in the shared set.

3) Distribute information about critical resources: A pure

resource-based distribution of events offers little protection

against attackers interested in acquiring information about

a specific critical resource in the system. An attacker can

acquire these events by identifying the broker managing such

a resource and by compromising it. Our algorithm provides a

protection against this type of attack by spreading events about

critical resources across multiple brokers. As different types of

events about the same resource are generally used in different

policies, we add a policy-dependent prefix in the selection of

the broker. When a resource is identified as critical, instead

of relying only on the resource name r for the identification

of the broker H(r), we add a prefix pi that depends on the

policy in which the resource is used. Different types of events

about a critical resource are sent to different brokers H(pi|r).
We consider critical all resources representing data about the

monitoring servers. In this way, We limit the possibility that an

attacker could use information collected from the compromise

of a monitoring server to compromise another server.

C. Correctness argument

Our algorithm is correct and complete if it identifies the

same set of violations that would be identified if all events

were integrated in a global KB. We show the equivalence in

two steps. First, we show that the processing of each rule in

the resource ruleset on a broker is equivalent to the processing

of the same resource-ruleset rule in a global knowledge base.

Second, we show that the combination of the resource ruleset

is equivalent to the original rule.

All predicates in a resource-ruleset rule share a common

variable V . For any instantiation V = v, the rule is triggered

only if events have the same value v for the variable V . Our

algorithm ensures that if a predicate p is part of the resource-

ruleset rule for a variable V , all events having V = v are

sent to the same broker. Hence, such a broker can identify all

inference for which V = v. As the same rule is repeated in

all brokers, we obtain the same result for every value of V .

Second, we show the equivalence between the resource

ruleset and the original rule by noticing that the rewrite

algorithm is, in fact, a simple logical manipulation of the

rule. The rule-generation algorithm can be seen as a set of

rewriting steps that preserve the equivalence. We choose a

variable V1 and create a rule ruleV1
that has a body containing

all the predicates predi(Ai) (where Ai is a set of variables)

such that V1 ∈ Ai. The head of the rule is a new predicate

partialv1(AV1
) where AV1

= {∪Ai|V1 ∈ Ai} . We remove

the selected predicates from the body of the original rule

and we substitute them with the partialv(Av). For each

rulev, because the predicate partialv is unique for the rule,

we have that a particular assignment of partialV1
(AV1

)
is possible if and only if all predicates predi(Ai) in the

rule body are also true. Hence, at the end of the rewrite

process, the initial rule has been rewritten as partialV1
(AV1

),
. . . , partialVk

(Ak) → violation(A). Because each of the

partialv is true if one only if the body of its rule is true,

and AV1
, . . . , AVk

still represent the entire set of variables,

we have that violation(A) is generated if and only if it is

generated by the original rule.

VI. EXPERIMENTAL EVALUATION

We measure the ability of our event distribution to protect

the system’s information against the three types of attackers

identified in Section IV. We show that our resource-based
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Fig. 3. Internal structure of our broker implementation. It receives events
and adds them to the appropriate resource-based KB. The Datalog resource
rulesets are added to the KB obtained by the union of the resource-based KBs.
The events generated by the rules are forwarded to the appropriate brokers. In
case of a changes in the availability of other brokers, the neighbors monitor
sends and receives resource-based KBs from other brokers.

mapping provides a better protection of event-confidentiality

than other types of event distributions, and that our technique

only introduces a delay limited within a few seconds in the

detection of violations.

A. Implementation

We implement the policy compliance algorithm in our

distributed monitoring system. Our agent-based system pro-

vides monitoring of SNMP data, running processes, network

connections, and logged users. Information is integrated in a

set of monitoring servers communicating using a 1-hop DHT.

The hash of the resource name is used for mapping resources

to brokers. The system is implemented in Java. Rules are

distributed to the servers before starting the process.

Each broker analyses the policies and creates resource

rulesets and queries. Events received by brokers are placed

in a resource-KB depending on the resources contained in the

event. Rulesets and queries are applied on the KB obtained

by taking the union of all resource-KBs. Once inference is

performed, the monitoring server applies the queries defined

from the rules and creates the set of events to send to other

brokers. Such events contain the partial executions of the

policies or specify the detection of a violation. If a violation

is detected, the broker forwards it to the brokers subscribed to

receiving violation notifications about the rule or about the

resources involved (e.g., the monitoring server in the sub-

organization managing the resources).

Mapping between resources and brokers can change over

time (e.g., because we add a new broker). A component, the

neighbors’ monitor, detects when a resource becomes mapped

to another broker and moves the proper part of the knowledge

base to such a broker.

Failures of a broker are handled by remapping automatically

resources to new brokers. Such a process is managed by the

neighbors monitor. However, when a broker fails, its current

knowledge base is lost. For the cases in which events are

correlated within a limited time window, a failure would

only affect temporarily the ability of detection violations

until the time window is passed. After such a time, the

new broker would have received all relevant events and the

event correlation becomes complete again. For the cases in

which correlation requires to store longer term information,

devices are configured to send periodically such information

about the state to brokers. For example, SNMP information is

generally long-lived. A device could periodically (e.g., every

10 minutes) send again its entire state to the brokers. A proper

handling of timestamps (such as the one described in Walzer

et al. [24]) ensures that policy violations that occurred during

the downtime are still detected, even if with a delay. An

architectural description of a broker is shown in Fig. 3.

The evaluation of our system requires having policies and

events to correlate. To evaluate our system in a wide range of

realistic conditions, we generate events from publicly available

data traces and from monitoring a set of systems in our

research infrastructure. The first dataset we use is a network

trace collected during the three days of the 2010 Network

Warfare Competition [27]. We use Snort1 to analyze the

trace and generate 60152 security-relevant events carrying

information such as type of alert, source IP, destination IP,

protocols, and ports. The second dataset is composed of

syslog data collected by monitoring the wireless network

infrastructure of Dartmouth college [28]. It is composed of

30 million syslog entries describing the state of the wireless

access points. It reports events such as association of wireless

devices to access points, interactions between access points,

and errors. The third dataset contains SNMP data about

configurations of hosts, network connections, running services,

and running programs. We collected this dataset by monitoring

using SNMP the state of different types of machines: servers,

development desktops, and laptop computers. We choose the

datasets to show the applicability of our technique to different

data used in policy compliance: network traffic data, network

management data, and security management data.

B. Event Dataset Analysis

We start our evaluation by analyzing the characteristics of

the events generated in network management and intrusion

detection. Such an analysis shows that a resource-based map-

ping can provide a more uniform distribution of data than a

mapping based on event-type.

First, we analyze our datasets to characterize the distri-

bution of events and of resources. We identify event types

and resource types. We have 24 types of events in the IDS

dataset, 42 in the wireless management dataset, and 14 in the

SNMP dataset. Each dataset has several types of resources. We

identify source ip, dest ip, source port, dest port, and ICMP

type as different resources for the IDS dataset2. We identify

access point IDs and MAC addresses for the wireless dataset,

and we identify IP, programs, network ports, and services as

resources for the SNMP motoring dataset.

We show that the distribution of the number of messages is

more flat if we distribute messages by resource, while it is far

from uniform when we distribute messages by type (i.e., each

resource has a similar number of messages related to them,

1http://www.snort.org
2We consider source and destination IPs and ports as different resources to

better understand the dataset characteristics.



IDS Resource Cardinality With type Avg Msgs stddev

Event type 24 24 4.17% 12.0%
Src port 180 357 0.556% 1.97%
Dst port 249 704 0.402% 1.31%
Src IP 75 742 1.33% 4.64%
Dst IP 171 1299 0.585% 1.93%
ICMP type 6 108 16.7% 29.9%

Wireless Resource Cardinality With type Avg Msgs stddev

Event type 42 42 6.67% 17.2%
Access point ID 544 8944 0.184% 0.451%
MAC address 9251 59473 0.010% 0.100%

SNMP Resource Cardinality With type Avg Msgs stddev

Event type 14 14 7.14% 24.8%
Host IP 4145 4147 0.024% 0.457%
Program 493 493 0.20% 1.50%
Network Port 20770 24222 0.00480% 0.20%
Services 56 56 1.79% 4.51%

TABLE I
RESOURCES AND THEIR DISTRIBUTIONS IN THE DATASETS. WE CONSIDER

THE AVERAGE NUMBER OF MESSAGES FOR EACH RESOURCE AND ITS

STDDEV. THE VALUES ARE NORMALIZED BY THE TOTAL NUMBER OF

MESSAGES DEALING WITH THE SPECIFIED TYPE OF RESOURCE.

while there are type of events that are much more frequent

than other types). We compute the standard deviation of the

normalized distribution of the number of messages by type and

by resource. For each event type and resource, we compute its

fraction of the total messages. We compute the stddev of this

distribution and we represent the value as a percentage. This

value is much larger when messages are aggregated by event

types, while it remains low (in most cases) when events are

aggregated by resource. We summarize this data in Table I.

A graphical representation of the CDF of this message

distribution for the Dartmouth dataset is shown in Fig. 4. The

y-axis of the graph represents the fraction of resources (or

message type) that are mentioned in at least the fraction of

messages specified in the x-axis. We see that we have a large

number of messages for each event type, while most resources

are mentioned in a small fraction of the messages. Hence, a

distribution of messages by resource could provide a more

uniform distribution of information.

C. Deployment on EC2

We run the system on EC2 spot instances to test the

system in a real distributed environment. One of the instances

generates events according to the distributions specified in our

datasets to model a stream of events from a real system. We

performed several experiments by changing the number of

policies, the length of the policies, and the number of brokers.

Each data point is the average of at least 5 executions. Each

time new policies have been generated to consider different

variations of rules and events.

We compare our system with systems presenting a different

distribution of events. Centralized solutions do not provide

any protection against the attack, as all information is com-

promised as soon as the main server is compromised. For this

reason, we do not consider it in our evaluation. Instead, we

consider a distribution of events based on event-type.

Distribution based on event type is used in pub-sub policy-
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Fig. 4. Event distribution for the Dartmouth dataset. We show the fraction
of resources (y-axis) receiving at least the fraction “x” of the messages.

based event systems for filtering events (e.g., [29]). The pro-

cessing of a policy is distributed across brokers by processing

the policy in groups of two event types. For example, a policy

in the form A ∧ B ∧ C → violation is split into two parts:

A ∧ B → partialAB and partialAB ∧ C → violation. A

broker b1 receives events of type A and B and send to a

broker b2 the resulting events of of type partialAB . Broker

b2 integrates the events partialAB with events of type C to

identify all policy violations. While at first glance this splitting

of the rule is similar to the one we describe in this paper,

this process does not consider in the mapping the value that

the variables assumes and groups events only based on their

predicates (i.e., their type).

To the best of our knowledge, current pub-sub policy-based

systems do not address the problem of limiting the knowledge

maintained at each broker. Allocating rules and events to

brokers in this solution is a challenging problem. A solution

that minimizes the overall number of events would require

mapping rules containing similar set of predicate types on the

same brokers. However, by doing such an allocation, the max-

imum knowledge on brokers becomes large, as each different

rule might require a slightly different set of predicates. To

provide a fair comparison, we perform an explicit allocation

of type-based policies to brokers so that the knowledge in each

broker is reduced. We allocate in the same broker partial rules

that manage the same events, and we balance the remaining

rules across brokers to balance the maximum knowledge.

The evaluation of our solution needs to analyze the behavior

of the system with a wide range of policies. While there are

already a limited number of policies specified in regulatory

documents, the way to map these abstract policies in rules that

rely on information acquired from the system depends on the

organization. An evaluation that focuses only on these policies

would be limited in evaluating the system for the future types

of complex policies. For this reason, we evaluate our system

using a set of semantically meaningful but randomly generated

polices. We use the semantic relations between the events in

our datasets to construct policies that preserve these relations.

We create such policies by defining a graph that relates events

and resources: nodes in the graph are the resources; edges

of the graph are the events generated in our datasets. Each
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Fig. 5. Semantic relations between resources and events. We use this graph
to generate random policies that preserve a valid meaning.

policy is constructed by a random walk through the graph. The

semantic graphs we used in the evaluation of the SNMP data

is shown in Fig. 5. We use the SNMP dataset as it provides

the most diverse set of events for the construction of complex

policies.

We quantify the amount of information obtained by an at-

tacker using the number of events, as each event represents an

atomic piece of information about the system. The distributed

execution of the rules, both in the resource-based solution and

in the type-based solution, creates partial results in form of

events. These events might not carry complete information

about the system’s condition. For example, we can consider

a resource ruleset p1(A,B), p2(B,C) → partialB(C) and

partialB(C), p3(C,D) → violation(C). The knowledge of

the event partialB(r) can be used to infer that there exist two

events in the form p1(ua, ub), p2(ub, r). However, the exact

values for the resources ua and ub are unknown. Even if such

information is partial, it might still be useful to an attacker. In

our evaluation we consider this type of inference. As we do

not know the usefulness of partial events, we consider the

events that can be inferred by the knowledge of partialB
as complete events. Hence, we might be overestimating the

knowledge acquired by an attacker. This type of “backward-

inference” is measured by inverting the direction of all the

rules in the resource ruleset. In our example, we measure the

number of events in a knowledge base containing the rules

partialB(C) → p1(ua, ub), p2(ub, C) and violation(C) →
p3(C, ud), partialB(C). In this KB, the knowledge of the

event violation(C) allows the attacker to infer three other

events. We only count these events if they are not already

known by the attacker because of other information contained

in the same KB.

We evaluate the ability of the system to distribute informa-

tion across the brokers. For estimating the protection provided

by the system against a MAX ALL attacker we measure the

number of events stored in each broker. We see that brokers,

on average, store less than 10% of the events. At the most,

we have one broker that stores about 17% of the events.

The effects of increasing the number of rules are limited: the

information about resources is reused across the execution of

multiple rules. The effects of inference are also limited. By

performing inference we can obtain a few additional predicates

about resources in the system. We see that a type-based

solution requires storing a larger number of events in brokers

for all cases. Fig. 6 shows the normalized number of events

stored in each broker when the number of rules increases.
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We measure the normalized maximum number of events

stored in a broker with the increase of the length of the rules.

Having longer rules creates the need to match a larger number

of predicate combinations. This increases the number of events

to store both in the resource-based solution and in the type-

based solution. However, the number of events in the resource-

based solution remains significantly lower. For all cases, the

maximum is obtained as the average maximum amount of

events across multiple executions. These results are shown in

Fig. 7.

Another measure of the protection provided toward a

MAX ALL attacker is the cumulative effects of the compro-

mises of multiple brokers. We consider brokers in decreasing

number of events to consider the worst case. We see that

our resource-based approach distributes the load so that com-

promises of multiple brokers still have limited effects. These

results are shown in Fig. 8.

Next, we measure the effects of our event distribution

against an attacker interested in knowing all events of a

specific type (i.e., a MAX EVENT TYPE attacker). We ran-

domly select an event type and declare it “type-critical”. We

measure the maximum fraction of “type-critical events” that

an attacker obtains when compromising a broker. As the

event-type distribution uses event-type for its distribution, our
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technique provides a better protection against this type of

attack. These results are shown in Fig. 9. We see that for

a type-based distribution of events the totality of events of

a specific type can be found on a specific node. Hence, the

value is 1 for all cases. In our resource-based distribution, the

number of type-critical events stored in each broker is limited.

We measure the effects of our approach against an attacker

interested in obtaining information about a specific set of

resources (i.e., a MAX EVENT CRITICAL attacker). We

randomly marked 10% of the resources as critical. We define

as “resource-critical” the events that relate to one (or more)

of such critical resources. Our goal is to minimize the amount

of events related to critical resources acquired by the attacker.

We measure the max value of critical events stored in each

broker for our resource-based distribution and for an event-

type distribution. We show that the resource-based distribution

limits the number of critical events stored in each broker.

These results are shown in Fig. 10.

However, for attackers targeting a specific resource, a pure

resource-based mapping algorithm provides weak guarantees:

an attacker only need to compromise a specific broker to

access all information about the resource. A better strategy

for deployment can take advantage of a mix-mechanism
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for distributing data. This method distributes events about a

critical resource to multiple brokers instead of concentrating

them in a single broker. However, it also increases the overall

distribution of information, as it reduces the reuse of events

across multiple rules. We show the effects of this distribution

in Fig. 10 with the suffix -opt.

The multi-step validation has limited negative effects on

the performance of the system. The distributed correlation

process adds a delay in the detection of problems. The result

of the processing in one broker needs to be forwarded to other

nodes before a complete detection is performed. We measure

the average delay in the detection introduced by our system.

We see that the delay introduced is within a second even for

long rules. The slightly lower delay in the 40-host solution is

created by a lower average communication delay in the 40-

host network configuration of our EC2 deployment. We show

this results in Fig. 11. The load of receiving event messages is

distributed across servers in a way proportional to the amount

of events stored in each broker.

In summary, our solution provides a better distribution of

information and, hence, a better protection against attacks

toward the confidentiality of the monitoring system than other

previous solutions for the distribution of information.



VII. DISCUSSION AND FUTURE WORK

While our algorithm achieves a good distribution of infor-

mation across hosts, we highlight a few limitations of our

approach and possible future extensions.

In the evaluation we do not consider inference based on the

semantic of the data. For example, the presence of an event

might imply with high probability the presence of a particular

condition in another resource. However, our approach of

limiting the overall exposure of information would limit also

the amount of data available for such an inference.

The algorithm focuses on the confidentiality of the event

data and does not consider the integrity and the availability

consequences of attacks. Protection against these attacks can

be included by adding redundancy in the aggregation process

and by the use of the log audit techniques presented in

the related work section. The addition of redundancy would

increase by a constant factor the number of events contained in

each monitoring host. Reducing the data necessary for policy

validation is still important to reduce the amount of data to

replicate. Our future work will investigate the tradeoff between

confidentiality, availability, and integrity in monitoring.

Additionally, future work will look at techniques such as

privacy-preserving set intersection to reduce the amount of

partially processed information stored in monitoring servers.

These techniques allow matching events between monitoring

hosts without revealing partially processed data.

VIII. CONCLUSIONS

We introduce an algorithm for performing policy-based

large-scale event correlation that maintains the knowledge

about the state of the system distributed across a large number

of machines. We show that this distribution of information in-

creases the security of the system toward attackers interested in

exploiting the monitoring system to acquire information about

the infrastructure’s state. We consider attackers interested in all

knowledge about the system, attackers interested in knowledge

about a particular type of event, and attackers interested

in a specific critical resources. We perform experiments by

injecting events taken from real datasets in an implementation

of the monitoring system running on machines in a EC2

cluster. We show that our system provides a better protection

against all these types of attackers.
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