
Multi-Organization Policy-based Monitoring

Mirko Montanari, Lucas T. Cook, Roy H. Campbell

Department of Computer Science

University of Illinois at Urbana-Champaign

{mmontan2, ltcook2, rhc}@illinois.edu

Abstract—The monitoring of modern large scale infrastructure
systems often relies on complex event processing (CEP) rules
to detect security and performance problems. For example, the
continuous monitoring of compliance to regulatory requirements
such as PCI-DSS and NERC CIP requires analyzing events to
identify if specific conditions over the configurations of devices
occur. In multi-organization systems, detecting these problems
often requires integrating events generated by different organi-
zations. As events provide information about the infrastructure’
internal structure, organizations are interested in reducing the
amount of information shared with external entities.

This paper analyses the problem of detecting policy violations
in network infrastructure systems managed by two organizations
(e.g., a cloud user and a cloud provider). We focus on CEP
monitoring systems and we introduce two protocols for selecting
the events to share between the two organizations to ensure
the detection of all possible policy violations. Our experimental
evaluation shows that reciprocal information sharing between the
two organizations significantly reduces the amount of information
to transfer. In our SNMP monitoring test case, we obtain a 80%
reduction in the information shared by any single organization.

I. INTRODUCTION

Policy-based event monitoring is often used in the man-

agement of large computer systems. Policies can identify

undesirable conditions that should be addressed by network

administrators. For example, in the area of network security,

regulatory policies such as NERC CIP [1], FISMA [2], PCI-

DSS [3] include requirements about the configurations of

network systems that ensure a minimum level of security.

A monitoring system can verify that a system is compliant

to such policies by integrating events containing information

about the system’s operations. When a network infrastructure

is managed by multiple organizations, the detection of such

undesirable conditions requires integrating events that organi-

zations might be reticent to share with external entities [4]. As

multi-organization systems are common in today’s infrastruc-

ture (e.g., cloud or critical infrastructure systems), reducing

the number of events to share can foster the adoption of

compliance monitoring and potentially increase the minimum

level of security in large systems.

This paper analyses the problem of sharing information

between two organizations to check the compliance of an

infrastructure to complex policies. We represent the problem

of compliance monitoring using Complex Event Processing

(CEP). In CEP, simple events describing the state of the system

are analyzed using rules and converted into complex events

which can represent policy violations. In multi-organization

infrastructures, these complex events need to be detected on

event streams generated by different organizations. Using our

approach we can detect such complex events while minimizing

the information shared between the two organizations.

Modern multi-organization systems already have a limited

ability of validating the compliance of their infrastructure to

policies. For example, in cloud computing, cloud providers

and cloud users share the burden of ensuring compliance to

security policies [5]. Cloud providers such as Amazon AWS

provide the ability of building services that are compliant

to regulations such as FISMA and PCI-DSS. Similarly, in

the area of critical infrastructure systems in the US, the

regional power companies that compose the power grid need

to show compliance to NERC CIP regulatory requirements.

However, in both cases, policies are simple and designed to be

validated independently by each organization. As the security

requirements become more complex, it is unclear that such a

separation is possible. Using our approach, administrators can

automatically identify which policies can be validated by each

organization and which events need to be shared to validate

the remaining policies.

We use a logic-based approach [13] to represent policies as

complex events. We use information about the completeness

of the information collected by the monitoring systems of

each organization to identify the events to share for de-

tecting all policy violations. We show that increasing the

amount of information shared by one organization reduces

the amount of information shared by the other. We define

different information sharing strategies suited for different

situations: an asymmetric pull strategy suited for when an

organization is subordinate to the other and willing to share

events unconditionally; and a symmetric push-pull strategy for

when the two organizations are peers and willing to reveal an

event only if it can be shown that such an event is important

for the overall compliance.

The contribution of the paper can be summarized as follows.

1) We define the problem of validating the compliance of a

multi-organization infrastructure to event-based policies.

2) We refine the concept of need-to-know and suit it to our

scenario of policy compliance monitoring.

3) We introduce two information sharing strategies for val-

idating compliance based on monitoring completeness

and on reciprocal information sharing.

4) We evaluate our information sharing strategies using

SNMP monitoring data and we show an 80% reduction

in the information shared by any single organization.

The rest of the paper is structured as follows. Section II

describes related research efforts in similar areas. Section III

defines our problem of multi-organization infrastructure policy

compliance. Section IV describes our information sharing

strategies. Section V shows our experimental evaluation. Fi-

nally, Section VI concludes our work.

II. RELATED WORK

The interaction between devices and services managed by

different organizations is a common aspect in computing. The

problem of sharing events between organizations has been

analyzed in the context of pub/sub systems. Most previous

work defines event confidentiality through explicit access

control policies. Using these policies, pub/sub systems decide

if an event can be forwarded to another organization.

In particular, Singh et al. [7] and He et al. [8] focus on

the healthcare domain. Singh et al. [7] introduce a system

where events are sent to other domains only when certain

conditions on the recipient are satisfied. Such an approach

enables the specification of explicit “need-to-know” policies

in event systems. For example, a pharmacist can receive

events about the existence of a prescription without receiving

information about the symptoms of the disease. In our case we

do not have an explicit “need-to-know” policy. Our approach

provides methods for computing such “need-to-know” from

a policy representing a complex event to detect. He et al.

[8] are interested in hiding specific private patterns from a

stream of events. They analyze the complexity of algorithms

that maximize the amount of public events published without

revealing private information. We are interested in computing

the information to share for validating policies.

In general CEP systems, Evans et al. [9] propose to tag

events with labels and use such labels to enforce access

control. The labels represent an explicit access control policy

that is not available in our setting. Denker et al. [10] analyzed

the tradeoff between need-to-protect and need-to-share through

the application of downgrading of data. Their model focuses

on continuous data provided by GPS systems. However, their

quantitative downgrading model is not suited for systems

where events are discrete. We provide methods for reducing

the amount of information shared while providing a complete

validation of policies over discrete events.

Other approaches in the area of security focused on defining

data anonymization strategies for performing a collaborative

section of attacks across several organizations. For example,

Lincoln et al. [11] introduce a technique for removing critical

data from network traces. However, these techniques are not

easily applicable to general CEP systems as they are strongly

related to the semantic of the data.

The idea to use knowledge about the completeness of

information for validating distributed queries locally was first

introduced by Denecker et al. [12]. Our approach builds on

top of such technique and extends it to queries that can be

partially answered locally and partially on a remote dataset.

III. MULTI-ORGANIZATION POLICY COMPLIANCE

The management of large-scale infrastructure systems of-

ten relies on policies to define undesirable conditions of

the systems. For example, in the area of security, PCI-DSS

policies define that critical services need to be protected by

firewalls; other policies might require anti-virus software to

be installed on every machine. More complex policies might

restrict the types of network services provided by a device

under certain network conditions. When such conditions are

identified, corrective actions are taken by operators to reduce

the exposure of the system to potential attacks.

CEP systems use events to represent infrastructure monitor-

ing information. Events are generated by different sources such

as SNMP monitoring agents running on devices, intrusion de-

tection systems (IDS), or applications. We use complex events

to represent policy violations: a violation is detected when a

specific sequence of events occurs in the system. For example,

we consider a monitoring system receiving events carrying

information about firewall configurations, about connections of

devices to networks, and about which devices are critical in the

current systems’ configuration. By analyzing event sequences,

we can detect when one of such critical devices is connected

to a network which is not protected by a firewall.

When multiple organizations are involved in the manage-

ment of an infrastructure, complex policies might require

integrating knowledge about events that occur in a portion of

the infrastructure managed by the other organization. For ex-

ample, a regulatory policy can specify that access to machines

storing restricted data should be allowed only to personnel

meeting certain criteria (e.g., export-controlled information in

the U.S. can be accessed only by citizens or U.S. residents).

In a virtualized cloud environment, admin access to the

Host VM storing the restricted data should be restricted as

well. Detecting violations to such a policy is possible only

if cloud providers and users share information about their

operations. In this paper, we provide a general mechanism to

identify which events should be shared across organizations

for identifying policy violations.

A. Event Model

We represent events and rules using a logic-based ap-

proach [13]. For infrastructure monitoring, we are interested

in reconstructing a view of the system’s operations. We use

Datalog predicates to represent events. We represent long-lived

states of the system (e.g., the fact that a connection exists

between two machines for a certain time) by associating a

time interval to each event: the start time and the end time of

the interval are the last two parameters of predicate. Events

can have an unspecified end time if they provide information

about states still holding when the event is generated.

We represent policy violations as complex events and

we define them using deductive rules expressed in Datalog

with negation. We store events into a Datalog KB, and

we identify complex events and violations by computing

a fixpoint model of the KB. For example, a policy can

specify that a violation occurs when a device running a

critical service connects to a server that is vulnerable. A

monitoring system can collect events about the software

running on a device (e.g, runs(host1, pid1, apache)), which

software is critical (e.g., critical(apache)), the network

connections that are open by the given programs (e.g.,

connects(host2, pid2, host1, 80)), and the service running

on specific ports (e.g., binds(host1, pid1, 80)). As these

conditions are defined upon system states that need to hold at

the same time, we consider only events for which the end time

is not set. When the system enters in such a state, violations

can be detected immediately. We represent this by omitting

the time parameters in the event predicates. The overall rule

is represented as follows.

violation(X,SX)← runs(X,PX , SX),critical(SX),
connects(X,PX , Y,PORT),binds(Y, PY ,PORT),
runs(Y, PY , SY),vulnerable(SY)

(1)

More general temporal constraints are represented using

Allen operators [14] and time windows. The KB stores all

events which are potentially relevant according to the time con-

straints of the rules [6]. For example, if a rule has a 5 minute

time window, events older than 5 minutes are discarded.

Time relations are represented by predicates which parameters

are the timestamps of the events. For example, we can be

interested in generating a complex event indicating the name of

the software binding to a given port. We have two events, one

indicating that a software sw is running with PID pid on host

from time t1 to time t2 (i.e., runs(host, pid, sw, t1, t2) and

one indicating that a program with PID pid is binding to a port

port on the same host (i.e., binds(host, pid, port, t3, t4)).
We specify that the second event needs to occur during the

first event using the predicate during(t1, t2, t3, t4). In the

rule processing, we translate it into the set of constraints

t1 < t3, t4 < t2.

In our multi-organization scenario, we consider two or-

ganizations A and B. We indicate with KA and KB the

sets of events collected by the monitoring system of each

organization. We separate the rules defining complex events

into two sets. First, a set R that contains rules defining

complex events. Second, a set V that specifies complex events

associated with violations of a policy. We indicate with K a

KB containing the events, and we define a set K+ as the

fixpoint model of K with the rules R and V . If we indicate

with K = KA ∪ KB the set of events collected by both

systems, we say that a violation v exists in a system if K+ ⊢ v.

If v exists, we say that the infrastructure is not compliant to

the policy defining v.

Applying reasoning independently in each organization KB

leads to incomplete and incorrect results: necessary events

for the detection of a violation or events which presence is

necessary for compliance might be stored in the remote KB

and not considered by the local reasoning process. The lack of

completeness and correctness are a consequence of the closed-

world assumption used by Datalog reasoning. In our case, an

event not in KA can still be true in the system and stored

in KB . Guaranteeing correctness and completeness requires

identifying a set of events E that can be transferred from B

to A to ensure that the evaluation of the policy is complete.

Our model is based on a few simplifying assumptions. We

assume that the two organizations agree on the policies to

use for creating complex events and that the same events

and policies are used in both organizations. We assume

that organizations behave according to the protocols and do

not provide false information (i.e., honest-but-curious attack

model). Additionally, we assume that clocks are synchronized

so that event timestamps are comparable across organizations.

The first assumption generally holds for policies specified by

regulatory agencies, or when knowledge of policies themselves

do not provide competitive advantage to the other party. The

second assumption generally holds in organizations that are

collaborating for providing a service. Periodic auditing of the

infrastructure can be used to verify compliance to the protocol

at a later time. The third assumption generally holds if clocks

are synchronized to an external source (e.g., NTP) and if we

consider policies which are not strictly dependent on causality

and event ordering. In our experience, infrastructure security

policies specified in PCI-DSS or FISMA do not require strict

synchronization between events.

B. Policy Violations of Local Resources

An organization is generally interested in detecting policy

violations that relate to its own resources. For example, in

the case of a simple policy requiring a host-based IDS to be

running on each machine, an organization might be interested

in receiving violations only for the machines that it manages.

We associate each resource in the system to a domain. We

assume that each resource has a unique name (i.e., a URI). We

define a set U containing all resources in the overall system,

and its subsets DA and DB representing the sets of resources

owned or managed by each organization.

An organization defines the violations of interest by

specifying—in the policy itself—the domains over which

variables are quantified. For example, we can add domains to

the policy in Eq. 1 to specify that organization A is interested

in receiving all violations about its own machines as follows:

∀X ∈ DA,∀PX , SX , Y, PY , SY ,PORT ∈ U
violation(X,SX)← runs(X,PX , SX),critical(SX),
connects(X,PX , Y,PORT),binds(Y,PY ,PORT),
runs(Y,PY , SY),vulnerable(SY),

(2)

where X and Y are hosts; PX and PY are PIDs of

processes; SX and SY are identifiers of software packages; and

PORT is a network port number. We identify the interest in

violations involving resources of organization A by restricting

the value of the variable X to DA. However, we cannot restrict

the domain of other variables. For example, restricting the

domain of Y to DA would make the policy identify only

violations that involve connections between two hosts within

A. By restricting only the domain of the variables in the head

of the rule (i.e., in the violation statement), we ensure that we

find all violations in K+ that relate to resources in DA.

C. Need-to-Know Events

For an organization A and a violation v, our approach is

based on identifing a set of events E ∈ KB so that KA∪E ∪
R ∪ V ⊢ v ⇔ K+ ⊢ v. That is, E contains the events that

should be shared by KB for detecting the violation. When this

set of events is minimal, we call it a need-to-know event set.

Events in such a set might carry less information than

the original events in KB and still be useful in determining

the presence of a violation. In particular, we can mask the

name of some resources mentioned in the statement. An

event relates n resources with each other under a specific

relation. For example, the event runs(host1, pid1, apache)
relates the resource host1 with the PID pid1 and with

the software apache. Often, we can detect a violation by

knowing that a relation exists between a resource and an

undefined resource with specific characteristics. For example,

we can consider a rule violation(P) ←runs(H,PID , P),
vulnerable(P) and assume that A maintains a list of vul-

nerable programs, while B provides the actual services. If A

knows vulnerable(apache), the only information missing

from B is the knowledge about the existence of at least

one host that runs such a service. As organization A is only

interested in knowing which vulnerable programs are run and

not the actual name of the host running them (i.e., the host

name is not part of the parameters of violation), we can

remove the host name from the events passed to A.

In first order logic we represent the existence of a host

running apache using existential quantification as in ∃H,P :
runs(H,P, apache). This statement expresses the fact that

runs is true for some value of H,P . Multiple pieces of

partial information can be related to each other to express

that two events are related to the same resource. For example,

we can express that some critical server runs apache using

∃H,P : critical(H)∧runs(H,P, apache). We define knowl-

edge units to be existentially quantified expressions in the form

∃V1, . . . , Vn : e1 ∧ . . . ∧ ek. In our Datalog framework, we

represent knowledge units using Skolemization: we substitute

the existential quantified variables with unique constants. As

Skolemization preserves satisfiability, if a violation exists, we

can find it in the Skolemized version of the system.

IV. INFORMATION SHARING ALGORITHM

For ensuring the completeness and the correctness of the

monitoring process, an organization needs to ensure that the

need-to-know events are among the events shared with the

other organization. However, identifying such a minimal set is

challenging, as it depends on the effect of each event on the

compliance state of the other organization. We have a tradeoff

in sharing: the more an organization shares information about

its events, the better the other organization can reduce the

events to share by better identifying the need-to-know events.

Without knowledge about any of other organization’s events,

all events relevant to the policies need to be shared. On the

other side, a complete knowledge of the other organization’s

events permits to select and share only the events that are

part of the minimal need-to-know set. We introduce two

intermediate approaches. Our first strategy uses the knowledge

about the completeness of the information collected by the

monitoring system of A to provide a first reduction in the

amount of information that B needs to share. Our second

strategy uses reciprocal information sharing from A to B to

further reduce the number of events shared by B.

The process of detecting violations is as follows. An organi-

zation A interested in detecting a set of violations VA analyses

its policies and its past events to create a set of persistent

queries P over the stream of events of the other organization.

Events in B matching queries are continuously sent back to

A. Collectively, these events form a set of events E′ that is

guaranteed to contain E.

A. Completeness of Local Information

The monitoring system of an organization focuses on ac-

quiring events from a specific set of resources: the resources

under the control of the organization. For such resources, we

might be able to acquire complete information. For example,

a monitoring system generating events overloaded(H) with

H ∈ DA is complete if it is monitoring the state of all hosts

in DA. In such a case, if a policy needs to match events

overloaded(H) with H ∈ DA, all the relevant events can be

found on the local knowledge base KA. Hence, for complete

statements, the closed-world assumption of Datalog holds in

the local KB and reasoning based on them is correct and

complete.

We model the completeness of knowledge acquired by the

monitoring system with a completeness KB (CKB). A CKB

describes patterns of events about which the local monitoring

system ensures that we have complete knowledge. A CKB

depends on the structure of the local monitoring system and

it is composed of two types of statements: simple complete-

ness statements and conditional completeness statements. An

example of CKB is shown in Fig. 1.

A simple completeness statement is a pattern defining events

for which we have complete local knowledge. If a policy is

looking for a certain pattern of events and such a pattern

can be described by a simple completeness statement, then

all events matching it can be found in the local KB. A

simple completeness statement is expressed by a statement

and by the domains of its variables. We indicate it with the

syntax ∀Vi ∈ D : st(V1, . . . , Vn). A statement bi(U1, . . . , Un)
matches a simple completeness statement st(V1, . . . , Vn) when

bi = st and for all i, 1 ≤ i ≤ n, domain(Ui) ⊆ domain(Vi).
For example, the simple completeness statement for the

overloaded event above is ∀H ∈ DA : overloaded(H).
A conditional completeness statement provides a restricted

notion of completeness of an event pattern. For example,

we can define a set of events critical(P) indicating that

a particular software P is currently critical to the organi-

zation operations. By using simple completeness statements,

we would be able to express that, given any program P , a

monitoring system has generated events indicating if such

program is critical to the system as a whole. However, most

monitoring systems would be able to decide only which

∀X ∈ DA : overloaded(X)
∀X ∈ DA, P,PID ∈ U : runs(X,PID , P)
∀X ∈ DA,PID , P ∈ U :
critical(P)← runs(X,PID , P)

Fig. 1. Example of completeness KB for organization A containing simple
and conditional completeness statements

programs are critical to the local organization, and might not

be aware of the critical programs for the other organization. We

represent such restriction of knowledge by using conditional

completeness statements. In our example, we express that a

monitoring system generates such critical events only for

the programs that are currently running on its devices by spec-

ifying the following: ∀X ∈ DA, ∀P ∈ D : critical(P) ←
runs(X,P). Such statement indicates that, given a policy

containing an event pattern critical(P), we can consider

the pattern local only if the values of P are restricted to

the programs running on the machines in the domain DA.

In general, we represent conditional completeness statements

as ∀Vi ∈ D : st← c1, . . . , cm.

Given a policy, our information sharing strategies start by

performing a completeness analysis to identify the information

provided by the local monitoring system. The completeness

analysis takes a policy v ← p1, . . . , pn, a completeness

knowledge base CKB , and determines which statements pi
can be found completely on the local knowledge base Ki.

We call such statements local-complete. We indicate the set

of local-complete statements with SL, and use SR to indicate

the others. A non-empty SR indicates that events affecting the

result of the policy compliance process might be stored in KB.

For example, the following policy can be answered com-

pletely in the knowledge base subject to the CKB in Fig. 1.

∀M ∈ D1,∀S ∈ D

violation(M,S) ← overloaded(M),
runs(M,PID , S),critical(S).

(3)

The statements overloaded and runs are complete

because of the simple completeness conditions in

the CKB . The statement critical is complete

because of the conditional completeness statement

critical(. . .) ← runs(. . .). In this case, SR = ∅ and

SL = {overloaded(M), runs(M,PID , S), critical(S)}.
If the set SR is not empty we need to acquire all relevant

events from KB. We introduce two strategies for defining the

set of persistent queries that provide a complete and correct

detection of all policy violations. The first strategy, called

asymmetric pull strategy, creates a set of queries P from

the set SR. Such a set of persistent queries is independent

from the events contained in KA and does not provide B any

information about events. The second strategy, a symmetric

push-pull strategy determines the queries in P using both SR

and the current state KA of the system. Added or removed

events in KA can add or remove queries. Using the symmetric

strategy, A can reduce the amount of events requested from

B at the cost of revealing some of its internal state.

B. Asymmetric Pull Strategy

The first strategy uses the set SR to acquire from KB

all events relevant to the policy. If the statements in SR =
{p1, . . . , pn} are simple events, creating a set of queries

P = {(p1), . . . , (pn)} is sufficient for ensure completeness

and correctness: all events matching any of the statements

relevant for the policy that cannot be found completely on

KA are sent back to A. Such a process guarantees that all

events potentially relevant to the process are known by A.

When the statements in SR are complex events, we need

to analyze recursively the policy to identify all simple and

complex events that can contribute to it. In our proofs, we take

advantage of the connection between complex event process-

ing and relational algebra formalized by Bry et al. [13]. Given

a knowledge base K , we use the symbol σpi
(K) to indicate a

knowledge base obtained by selecting only statements in K for

which there exists a substitution of variables that unify with

the given statement pi. Given a set of statements B, we define

the extended set B′ by adding to the set B the statements dj
contained in the rules h← d1, . . . , dm where a pi ∈ B unifies

with h. We continue until we analyzed all statements in B′.

Lemma 1. We take a violation v, a rule v ← p1, . . . , pn, a

knowledge base K containing ground statements and the sets

of rules R. We consider a set B = p1, . . . , pn and its extended

set B′. We have that K ⊢ v ⇔ ∪bi∈B′σbi(K) ⊢ v.

Proof Sketch: Proving (⇐) is simple:
⋃

bi
σbi (K) is a

subset of K , so if it can prove v then K can prove v. The other

direction can be proven by contradiction: assume that there is

an event not in B′ that is necessary in the proof of v. This event

is either part of the policy or generated to contribute eventually

to the policy. However, events of this type are included in B′

by definition.

Theorem 1. Given two sets KA, KB , a rule V = {v ←
p1, . . . pn} with a body containing SL = {p1, . . . , pr−1}
statements and SR = {pr, . . . , pn} statements. Let S′

R be the

extension of SR on the rules R.

For every v we have that (KA ∪ (
⋃

bi∈S′

R
σbi(KB))∪R) ⊢

v ⇔ K+ ⊢ v.

Proof Sketch: For P = SL ∪ S′

R, the lemma implies

(
⋃

pi∈P (σpi
(KA∪KB))∪R) ⊢ v ⇔ K+ ⊢ v. By definition of

completeness, for each pi ∈ SL, we have that σpi
(KA∪KB) =

σpi
(KA). Hence, we can rewrite the first part of the expression

as
⋃

pi∈P σpi
(KA)

⋃
pi∈S′

R
σpi

(KB) ∧ R. Because KA is a

superset of
⋃

pi∈P KA, we can rewrite the entire expression

and obtain (KA ∪ (
⋃

pi∈S′

R

(KB)) ∪R) ⊢ v ⇔ K+ ⊢ v

C. Symmetric Push-Pull Strategy

The second strategy uses the set SR and the events in KA

to create a set of persistent queries P selecting a narrower set

of events E′. This narrower selection is obtained by providing

to B some limited information about KA so that only events

that are potentially relevant to a violation are delivered to A.

Intuitively, the strategy is based on selecting the events

matching on KA the local part of the policy to determine

a set of specific “missing events” that, if present in KB,

would create a violation. In particular, we consider the set

SL = {p1, . . . , pr−1} as a query L = (p1 ∧ . . . ∧ pr−1). For

each set of events matching the query, we substitute the values

of the variables (substitution γi) in the non-local statements

SR. After this process, we call statements in γi(SR) that now

have at least a ground parameter boundary statements. These

statements are submitted as persistent queries to organization

B. Events matching these queries are returned to A. A then

adds the new values for the variables to each substitution γi
and repeats the process until all statements are considered.

1) We take a policy v ← p1, . . . , pn. We assume that all pi
are simple events. We will see below how to generalize

it to complex events.

2) Starting from SR and SL of the policy, we compute

the set SB of statements in SR that share at least one

variable with statements in SL. SB is the boundary set

which represents the remote information about which the

local statements have partial knowledge. If we indicate

with XL the variables used in SL and with XR the

variables used in SR, we can determine the set of shared

variables XB = XL ∩XR. If XB = ∅ but SR 6= ∅, no

variables are shared and we revert to the pull algorithm.

3) We construct a local query on KA by taking the con-

junction of the statements in SL and projecting the

result on the variables XB . We substitute the variables

in SB = {p1, . . . , pb} with the substitution γi and we

create a set of queries P = {(γi(p1)), . . . , (γi(pb))}.
The queries P are submitted to organization B.

4) When new events are receive from B, we add the results

in the knowledge base and create a new CKB′ where we

add a conditional completeness condition
∧

li∈SL
li →

pi for each pi ∈ SB where pl,i ∈ SL. We repeat the

algorithm with the new CKB′ until SR = ∅

If an event pi is a complex event, we add an additional step

to the process. We consider the rule heads that unify with pi,

and we apply the algorithm recursively to the respective rules.

The correctness and completeness of this process can be

shown with a few considerations. First, if we cannot find a

substitution γi satisfying SL on KA, we have that K+ 6⊢ v.

This comes from the local completeness of SL: events in SL

can be found only in KA or they do not exist in K . If we

have a substitution γi, we can consider it a partial match of a

rule. If we can find events matching the statements pj ∈ SR

in KB that are compatible with the substitution γi, then we

have found a set of events matching the condition of the rule.

By submitting the persistent queries we obtain such a result:

either the event occurs and it is delivered to A and added to a

K ′

A, or it does not occur. In either case, K ′

A is now complete

in respect to the new events. As we send queries for all γi,

we can add a new completeness statement
∧

li∈SL
li → pj .

Lemma 2. Given a policy v ← p1, . . . , pn, two sets

SL = {p1, . . . , pr−1} and SR = {pr, . . . , pn}, a set SB =
{pr, . . . , pb}, a completeness KB CKB, and a set of substi-

tution γi obtained by performing the query p1 ∧ . . . ∧ pr−1

on KA. We have that K ′

A = KA

⋃
pj∈SB

⋃
i σγi(pj)(KB) is

complete with respect with CKB ′ = CKB∪(
∧

li∈SL
li → pj).

Proof Sketch: For pj to be conditionally complete in K ′

A

we need to ensure that for all events matching pj for which

there are a set of connected events
∧

li∈SL
li, we have that

K ′

A ⊢ pj ⇔ K ⊢ pj . First, we show that if K ⊢ pj ⇒
K ′

A ⊢ pj . We have that for all γi such that γi(SL) ⊂ KA,

we submit a query to KB and we obtain γi(pj). In this way

we obtain all pj for which the condition
∧

li∈SL
li are true.

Similarly, K ′

A ⊢ pj ⇒ K ⊢ pj because the set of queries can

also identify the lack of the event.

Theorem 2. Given a policy v ← p1, . . . , pn, two sets SL =
{p1, . . . , pr−1} and SR = {pr, . . . , pn}, and a completeness

KB CKB , the push-pull protocol is complete, correct, and

terminates.

Proof Sketch: The core of the proof proceeds by in-

duction. Because of space restrictions, we provide only a

sketch. Each step of the protocol creates a set Si
B and acquires

the set of events
⋃

pj∈Si
B

⋃
k σγk(pj)(KB) from KB . From

Lemma 2, the new knowledge base Ki
A is complete for

CKBi = CKBi−1 ∪ (
∧

lk∈SL
lk → pj). By the conditional

completeness, Si
L = Si−1

L ∪ Si−1
B (computed with the new

CKBi), which is used to compute a new Si
R and Si

B . By

induction, Si
L will increase in size by some nonzero amount

for each i since Si
B contains disjoint events by definition.

Similarly, Si
R will decrease in size. If Si

B 6= ∅ during the

protocol, eventually Si
R = ∅ and the validation of compliance

is performed locally on Km
A , which is complete and correct

by definition. If at any point Si
B = ∅, the Ki

A is obtained by

running the pull algorithm, which is known to be complete

from Theorem 1. Since the universe of events is finite, Si
L is

finite and the protocol will eventually terminate.

V. EXPERIMENTAL EVALUATION

We perform a set of experiments to measure the ability

of our information sharing strategies to reduce the data sent

between the two organizations. We quantify the data by

measuring the amount of basic information units shared. An

information unit is a piece of information that associates a re-

source with a predicate. For example, an event computer(host1)
associates the resource host1 with the predicate computer.

We count this event as one information unit. A predicate

hasIP(host1, ip1) relates the resources host1 and ip1 to hasIP

and we consider it composed of two information units. This

measure is representative of the information shared and does

not depend on the specific definition of the event parameters.

We consider an event dataset collected by monitoring the

SNMP state of 10 research hosts for 30 days. These hosts

include a mix of laptops, development machines, and a web

server. We consider 14 types of messages providing infor-

mation about resources in the system. The dataset includes

information about 500 distinct running programs (associated

to 20000 PIDs), 70000 distinct network connections, 50 dis-

tinct network services, and 4100 IP addresses. We scale the

dataset to represent a larger set of machines by constructing

probabilistic models of the events. The sequence of events

in each organization is created by generating events which

parameter values are taken from such distributions. Events are

timestamped and added to each knowledge base.

As the type of policies that can be specified in a real

system can vary widely depending on the interests of the

administrators, we evaluate the performance of our approach

using a wide range of policies. We randomly generate valid

policies which correlate types of events that are semantically

related to each other by sharing the values of some variables.

We ensure that the shared values are semantically meaningful

(e.g., the value for an IP in an event is correlated to the value of

IP on another event) by constructing a graph where resource

types are nodes, and event types are edges. Starting from a

resource type node, we randomly select an event and add it

to the policy. We continue until we reach a predefined length

of the policy. If we reencounter the same resource type node

multiple times, we randomly decide if the event needs to refer

to the previous resource (i.e., use the same variable name),

or if we expect the event to refer to a different resource (i.e.,

different variable names).

We create a completeness KB that is consistent with the

information collected by our SNMP-based monitoring system.

This completeness KB is shown in Table I. The KB of each

organization is populated by generating events according to the

dataset distribution. We track each resource used in the events

and assign it to either D1 or D2. The completeness KB allows

us to distribute events so that each KB contains the events that

would be collected by a monitoring system described by such

a completeness KB.

Domain Event
M ∈ DA TCPService(M,S)
M ∈ DA port(S, P) ← TCPService(M,S)
M ∈ DA UDPService(M,S)
M ∈ DA port(S, P) ← UDPService(M,S)
M ∈ DA TCPConn(M,C)
M ∈ DA LocalPort(C,PORT) ← hasTCPConn(M,C)
M ∈ DA RemotePort(C,PORT) ← hasTCPConn(M,C)
M ∈ DA LocalIP(C, IP)← hasTCPConn(M,C)
M ∈ DA RemoteIP(C, IP) ← hasTCPConn(M,C)
M ∈ DA software(C, SW) ← hasTCPConn(M,C)
M ∈ DA connState(C, ST) ← hasTCPConn(M,C)
.

TABLE I
PORTION OF THE CKB OF OUR SNMP-BACKED MONITORING SYSTEM.

First, we show that our solution limits the overall exchange

of information. Without the use of the completeness KB,

organization A acquires all events in organization B which

are relevant to any of the predicates in the rule. The first ex-

periment measures the fraction of information shared with the

increase of the length of the rule. The fraction of information

shared is measured as the ratio of information shared over

the information relevant to the rule (i.e., events which names

appear in the rule). Its results are shown in Fig. 2. When we

increase the length of the rule, the fraction of information

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

fr
a

c
ti
o

n
 s

h
a

re
d

 I
U

rule length

full B->A
pull B->A

pullpush B->A
pullpush A->B

min complete UI B->A
min partial UI B->A

Fig. 2. Information shared with the increase in the length of the rule.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 400 600 800 1000 1200 1400 1600 1800 2000

fr
a
c
ti
o
n
 s

h
a
re

d
 I

U

organization IU

full B->A
pullpush B->A

pull B->A
min complete B->A

min partial B->A
pullpush A->B

Fig. 3. Information shared with the increase in the number of events
generated by the two organizations. We fix the rule size to 5.

shared remains almost constant in all cases. For small rule

lengths, most of the information is found locally in organiza-

tion A. Using the completeness KB and a pull strategy, we

can reduce the number of events that need to be transferred

by not requiring information about the local portion of the

rule. In our SNMP case, this approach approximately halves

the number of events shared by organization B. The push-pull

strategy further reduces the amount of information to share. In

the SNMP case, we reduce the information sharing to about

20% of the information shared in a full sharing strategy (i.e.,

no completeness KB). To obtain this reduction, organization

A needs to share to organization B about the same amount

of information. The optimal amount of information shared

from B to A can be obtained by transferring all data from

organization A. We see that the minimal number of complete

events that needs to be shared to identify all violations is about

10% of the relevant information. If we share only partial events

(i.e., single information units), we can further reduce this

amount to about 1% of the relevant information. In this case, it

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 3 4 5 6 7 8

q
u

e
ri
e

s

rule length

pushpull - 2000
pushpull - 1000
pushpull - 500

pull

Fig. 4. Number of persistent queries placed on organization B.

is sufficient for organization B to share enough information to

pinpoint which resource in A is in violation, without revealing

any of its own events that contribute to the actual violation.

The second experiment measures the fraction of information

shared with the increase in the amount of events considered

in the organizations. We consider a rule of length 5, and

we see that the fraction of information that needs to be

transferred remains constant and consistent with the previous

set of experiments. This data is shown in Fig. 3.

Next, we evaluate the overhead introduced by running

our information-sharing algorithms. We measure the average

amount of persistent queries that are placed on the organi-

zation B event stream for selecting the events to share with

organization A. For the case of the pull strategy, the number

of queries is proportional only to the length of portion of the

rule that cannot be evaluated locally. For the case of the push-

pull strategy, the number of queries depends also on the size

of the events in organization A that we consider. In the push-

pull case, the amount of queries is limited to a few hundred.

This data is shown in Fig. 4.

In summary, our experiments show that our techniques can

significantly reduce the number of events to be transferred

across the two organizations without significantly increasing

the overall load on the system.

VI. CONCLUSION AND FUTURE WORK

We introduce two solutions to the problem of validating

compliance of multi-organization systems to infrastructure

security polices. Our solutions are based on specifying the

completeness of the information collected by the local mon-

itoring systems of each organization. Our experiments using

SNMP data show that an approach that requires reciprocal

sharing of events obtains a reduction of 80% in the amount of

information shared by one organization when about 20% of

the information is shared by the other.

Future work should extend our approach in several ways.

First, we assume that organizations are honest-but-curious ac-

tors. While accountability can enforce such a behavior, future

work could extend our results to a more general adversary

model. Second, we assume that organizations are willing to

share all events that are relevant to the policies. However, in

some cases, organizations might prefer sharing only events

not critical to the organization security. Future work should

incorporate such sharing constraints in the framework. Finally,

future work should extend our approach to the general case of

n organizations.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for

their valuable comments and suggestions to improve the quality of

the paper. This work was partially supported by a research grant

provided by the Boeing Company. This material is based on research

sponsored by the Air Force Research Laboratory and the Air Force

Office of Scientific Research, under agreement number FA8750-11-2-

0084. The U.S. Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any copyright

notation thereon.

REFERENCES

[1] North American Electric Reliability Corporation, “NERC
CIP 002-009,” NERC Tech. Rep., 2007. Available:
http://www.nerc.com/page.php?cid=2—20

[2] National Institute of Standard and Technology, “Federal Information
Security Management Act (FISMA) Implementation Project.” Available:
http://csrc.nist.gov/groups/SMA/fisma/index.html

[3] Payment Card Industry Security Standards Council, “Payment Card
Industry (PCI) Data Security Standard,” Tech. Rep. October, 2010.

[4] J. King, K. Lakkaraju, and A. Slagell, “A taxonomy and adversarial
model for attacks against network log anonymization,” in ACM
symposium on Applied Computing. ACM, 2009, pp. 1286–1293.

[5] Amazon Web Services, “Amazon Web Services : Risk and Com-
pliance White Paper,” Amazon AWS Whitepapers, December, 2011.
http://aws.amazon.com/whitepapers/overview-of-security-processes-2/

[6] K. Walzer, T. Breddin, and M. Groch, “Relative temporal constraints
in the Rete algorithm for complex event detection,” Proceedings of the

second international conference on Distributed event-based systems -
DEBS ’08, p. 147, 2008.

[7] J. Singh, L. Vargas, J. Bacon, and K. Moody, “Policy-Based Information
Sharing in Publish/Subscribe Middleware,” 2008 IEEE Workshop on

Policies for Distributed Systems and Networks, pp. 137–144, Jun. 2008.
[8] Y. He, S. Barman, D. Wang, and J. Naughton, “On the complexity of

privacy-preserving complex event processing,” in Proceedings of the

30th symposium on Principles of database systems of data. ACM,
2011, pp. 165–174.

[9] D. Evans and D. Eyers, “Efficient Policy Checking across Administrative
Domains,” IEEE International Symposium on Policies for Distributed

Systems and Networks (POLICY). IEEE, 2010, pp. 146–153.
[10] G. Denker, A. Gehani, M. Kim, and D. Hanz, “Policy-Based Data

Downgrading: Toward a Semantic Framework and Automated Tools
to Balance Need-to-Protect and Need-to-Share Policies,” in IEEE

International Symposium on Policies for Distributed Systems and
Networks (POLICY), 2010 . IEEE, 2010, pp. 120–128.

[11] P. Lincoln, P. Porras, and V. Shmatikov, “Privacy-preserving sharing
and correction of security alerts,” in USENIX Security Symposium.
USENIX Association, 2004, pp. 17–17.

[12] M. Denecker, A. Cortés-Calabuig, M. Bruynooghes, and O. Arieli,
“Towards a logical reconstruction of a theory for locally closed
databases,” ACM Transactions on Database Systems (TODS), vol. 35,
no. 3, p. 22, 2010.

[13] F. Bry and M. Eckert, “Towards formal foundations of event queries
and rules,” in Workshop on Event-Driven Architecture, Processing and
Systems, held at the International Conference on Very Large Data

Bases (VLDB), 2007.
[14] J.F. Allen, “Maintaining knowledge about temporal intervals, ”

Communications of the ACM, 26(11), 832-843. 1983

