
Limiting Data Exposure in Monitoring
Multi-domain Policy Conformance?

Mirko Montanari, Jun Ho Huh, Rakesh B. Bobba, Roy H. Campbell
{mmontan2, jhhuh, rbobba, rhc}@illinois.edu

University of Illinois at Urbana-Champaign

Abstract. In hybrid- or multi-cloud systems, security information and
event management systems often work with abstract level information
provided by the service providers. Privacy and confidentiality require-
ments discourage sharing of the raw data. With access to only the par-
tial information, detecting anomalies and policy violations becomes much
more difficult in those environments.

This paper proposes a mechanism for detecting undesirable events over
the composition of multiple independent systems that have constraints
in sharing information because of security and privacy concerns. Our
approach complements other privacy-preserving event-sharing methods
by focusing on discrete events such as system and network configura-
tion changes. We use logic-based policies to define undesirable event se-
quences, and use multi-party computation to share event details that are
needed for detecting violations. Further, through experimental evalua-
tion, we show that our technique reduces the information shared be-
tween systems by more than half, and we show that the low performance
of multi-party computation can be balanced out with concurrency—
demonstrating an event rate acceptable for verification of configuration
changes as well as other complex conditions.

1 Introduction

Monitoring of complex systems for configuration errors, security breaches, or
regulation compliance requires a large amount of information to be collected
(usually in the form of audit logs) and analyzed. In distributed environments like
clouds or cloud-of-clouds [2], this monitoring may require logs to be shared across
multiple security domains to detect particular security events. However, some of
those logs might contain sensitive information about customers or might have
commercial value. Without the necessary confidentiality and privacy guarantees,
most organizations will be reluctant to share such privileged logs with others.

? This material is based on work supported in part by a grant from The Boeing
Company, and by a grant from Air Force Research Laboratory and the Air Force
Office of Scientific Research under agreement number FA8750-11-2-0084. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

Being mindful of such concerns, this paper proposes a solution that facilitates
integration of events across multiple security domains while providing the neces-
sary confidentiality guarantees. With our solution, cloud users or cloud providers
can detect problems in their own systems (e.g., a virtual machine running in an
IaaS cloud), even if some parts of the infrastructure are being controlled by dif-
ferent organizations. We rely on the definition of “invariants,” which capture
the correct or desirable operations of the systems of interest. Only those events
that have the potential to identify violations of those invariants are ever shared,
minimizing the amount of events that need to be shared in the first place.

Privacy-preserving techniques that rely on data aggregation and anonymiza-
tion [23, 27, 17] have been proposed in the past. While those techniques can be
effective on policies that use numeric data and thresholds [3, 6], many conditions
that are of interest to network administrators require the capability to analyze
discrete events (e.g., configuration changes in servers or network devices, changes
in user information, or component failures). To the best of our knowledge, there
is no good solution for aggregating or anonymizing discrete events without losing
the details necessary for validating policies.

The proposed technique, on the other hand, detects complex, inter-domain
policy violations through careful selection of the events to share across the or-
ganization boundaries. We introduce a distributed algorithm that coordinates
the interaction among a dynamic set of monitoring servers to guarantee the de-
tection of all policy violations, and we use a cryptographic mechanism called
privacy preserving secure two-party computation [9] to figure out which events
are relevant to a violation, and share only them across the domain boundaries.

We show that parallelism in the event correlation problem makes secure two-
party computation practical in our case. Additionally, the lack of a central server
where information is analyzed makes our technique suitable for multi-cloud sys-
tems or cloud-broker-based systems where new resources and security domains
are continuously being added at runtime. Our performance evaluation confirms
that our technique is indeed capable of significantly reducing the amount of in-
formation that needs to be shared, and that it can handle event loads of popular
configuration management systems.

The contributions of this paper are summarized as follows:

1. We describe a policy-based algorithm for detecting violations of invariants
across multiple security domains, and provide a proof of correctness of that
algorithm.

2. We propose a mechanism for generating a policy-dependent implementation
of the two-party computation algorithm using an efficient implementation of
garbled circuits [10]. This algorithm identifies the information that needs to
be shared while preserving privacy.

3. We demonstrate that parallelism of the event correlation problem can lead
to a practical deployment of the two-party computation algorithm.

4. Our experimental evaluation shows that our solution is practical and can
reduce significantly the amount of information that needs to be shared across
multiple domains.

The rest of the paper is structured as follows. Section 2 provides an overview
of related work in the area of multi-domain monitoring and secure information
sharing. Section 3 discusses our own monitoring architecture and distributed
event correlation protocol. Results from the experimental evaluation are pre-
sented in Section 4. Finally, Section 5 presents our conclusions and future work.

2 Related Work

Collaboration between organizations for detecting attacks and other security
problems has been an important research topic for several years. The interde-
pendencies between systems that we find in today’s cloud computing environ-
ments increase the need for such collaboration. However, sharing of information
presents several security problems. Monitoring data can provide insights into an
organization’s computing infrastructure which may give a competitive advan-
tage to rival organizations. Such data can also provide attackers with informa-
tion about possible vulnerabilities. For that reason, a significant amount of work
has been focused on reduction of information sharing, while still permitting the
detection of complex event patterns.

Several past techniques focus on hiding log information through anonymiza-
tion [23, 27, 17]. Lincoln et al. [17], in particular, introduce a technique for re-
moving critical data from network traces. SEPIA [3] provides a threshold-based
mechanism for sharing aggregated data about network traffic. Denker et al. [6]
use a selective downgrade of GPS data for sharing location data. However, such
techniques generally apply to numeric information, and the summarization is
strongly dependent on the semantics of the information. Our technique focuses
on discrete data that cannot be summarized without loss of the ability to de-
tect policy violations correctly, such as configuration changes, failures of specific
machines, or vulnerability information.

Montanari et al. [20] introduce a protocol for the validation of policies across
two organizations. The authors use explicit meta-data about the completeness
of the information collected from each monitoring system to decide which events
to share. Our work does not require explicit metadata, and our approach is
applicable to multiple security domains. Additionally, the use of a secure two-
party computation protocol further reduces the amount of shared events.

Huh and Lyle [12] propose a trusted computing based approach to enable
“blind log analysis,” allowing different organizations to freely share raw log data
with the guarantees that their raw data will not be revealed to other organiza-
tions. A trustworthy log reconciliation service is attested and verified, providing
assurance that all the log reconciliation and analysis is performed blindly inside a
protected virtual machine. Only the fully processed, privacy-preserving analysis
results are made available to other organizations. In contrast, in our approach,
only the information required for detecting violations leaves the security domain,
reducing the amount of information that need to be shared in the first place.
We reduce the reliance on remote software for protecting the confidentiality of
data, and we do not rely on the capabilities of remote attestation [5].

Techniques focusing on integrating data in a central server for analysis have
also been proposed. Australia’s Commonwealth Scientic and Industrial Research
Organisation (CSIRO) has developed a Privacy-Preserving Analytics (PPA) soft-
ware for analyzing sensitive healthcare data with confidentiality guarantees [22].
PPA performs analysis on the original raw data but modifies the output deliv-
ered to researchers to ensure that no individual unit record is disclosed. Huh
and Martin [13] propose the concept of a “blind analysis server,” an attested
and verified remote server which allows privileged data analysis to be performed
securely and privately. In work closely related to ours, Lee et al. [16] introduce
a framework that allows a group of organizations to share encrypted logs with
a central auditor. The auditor analyzes the encrypted logs and detects attacks
or other policy violations. Our work improves on such approaches in two major
ways. First, we remove the need to store centrally the logs collected from all or-
ganizations. While having a central authority is feasible in certain situations, in
cloud and cloud-of-clouds systems, organizations can integrate resources across
multiple providers and provide them to different clients at runtime. Having all
entities involved push out their logs to a single central location is impractical
and not desirable. Our approach uses a distributed mechanism for correlating
data, and security domains interact directly only when they require information
about specific external resources.

Other approaches rely on explicit confidentiality policies to define which
events to share across organization boundaries. Singh et al. [26] introduce a
system defining explicit confidentiality policies on classes of events. Similarly,
Evans et al. [7] propose a solution in which access control is enforced by tagging
events with labels. Rigid confidentiality policies proposed in those works would
not be fully compatible with our multi-domain scenario. As information should
be shared only when needed, fixed policies are either too open or too strict. Open
policies unnecessarily increase the information shared, while strict policies might
make the system unable to guarantee the detection of all policy violations.

3 Multi-domain Event Sharing for Compliance

The increasing complexity of managing and securing large systems has driven
the development of policy-based approaches to address the problem [8]. In such
approaches, policies or “invariants” identify correct or desirable conditions of the
system. Administrators define rules that identify violations of such policies and
indicate misconfigurations, vulnerabilities to known attacks, or non-compliance
to best-practices that reduce the risk of zero-day attacks. Monitoring systems
continuously collect information about the infrastructure to detect violations.

Examples of policy-based approaches can be found in different domains. For
example, it is possible to define policies to monitor for compliance with regula-
tory requirements such as the Payment Card Data Security Standard (PCI-DSS)
[24] or the Federal Information Security Management Act (FISMA) [25]. Both
regulations mandate a minimum level of security configuration in an infrastruc-
ture. PCI-DSS applies to companies handling credit card data, while FISMA

Table 1. Example of a multi-domain policy and events required for the detection of a
violation. For each event, we list its source and the information it carries.

Policy example Events Source Res Description
Not run a critical
service on a phys-
ical server that is
sending malicious
traffic

criticalService Private In-
frastructure

P, I Critical service P is
running on instance I

instanceAssigned Cloud
Provider

I, S VM Instance I
launched on S

badTraffic Cloud
Provider

S Malicious traffic de-
tected from S

applies to information systems in the U.S. federal government. Policies define
known types of misconfigurations or error situations, and are used to identify
quickly the presence of a problem before an attacker can exploit it.

In many modern cloud systems, multiple security domains interact to pro-
vide the desired services. For example, in a hybrid cloud environment, services
provided by the infrastructure of an organization are integrated with services
managed by a cloud provider. In intercloud systems [2], or in systems based
on cloud brokers [18], multiple cloud services are integrated to provide a ser-
vice to cloud users. Such services are provided by a variety of cloud providers,
and their selection might depend on dynamic conditions not known beforehand.
In such settings, multiple independent monitoring systems acquire information
about the infrastructure. Monitoring systems in the private infrastructure ac-
quire application-level information from software running on the local infrastruc-
ture and on cloud instances. Monitoring servers managed by the cloud provider
acquire information about the physical location of virtual machine instances,
the colocation of virtual machines with other customers, and the load of the
infrastructure. In these settings, conditions to detect violations can be complex,
and analyzing each organization’s information independently is not sufficient to
detect violations. However, sharing monitoring information outside an organi-
zation is often undesirable. Information about the infrastructure configurations
provides details about security postures or information about the internals of an
organization to competitors.

We can find several examples of policies in enterprise and cloud systems. For
example, a policy can specify that a critical service should not depend on services
running on machines that process a lot of external traffic; another policy might
require a computer joining a private network not to run a certain set of services.
In both cases, it might be desirable not to reveal the entire state of a system at
once, but only when certain conditions occur. For the purpose of explaining our
approach, we use the following example throughout the paper.

Example: An administrator defines a policy requiring that a critical server
not be run on a physical server that is sending malicious or unwanted traffic (e.g.
unexpected port scans). Violation of such a policy can be detected by identifying
three events, as shown in Table 1. Such events are generated by different infor-
mation sources: deployment systems in the cloud provider indicate that a new
instance has been created; SNMP agents on virtual machines generate informa-

(e1, type,criticalService),
(e1 , instance, m),
(e1 , pname, p),

(E3, type,badTraffic),
(E3, server, S),

(E2, type,instanceAssigned),
(E2, instance, M),

(E2, server, S),

Cloud provider infrastructure

Service provider infrastructure

Monitoring
Servers

Distributed Event
Correlation Algorithm

Private infrastructure

Two-server
correlation protocol

Fig. 1. Architecture of our monitoring system. Multiple monitoring servers are placed
in different security domains. Servers communicate to detect violations of policies.

tion about running programs; and network monitoring systems detect malicious
traffic from physical servers. Because information sources are in different orga-
nizations, detecting violations requires sharing data across domains.

We design a monitoring architecture (see Fig. 1) that supports such data
sharing while minimizing the amount of data shared. The monitoring servers
within each organization have a copy of the shared policy and collect informa-
tion about the local infrastructure. The collected information is used to detect
local violations without requiring any communication with other servers. Addi-
tionally, each server verifiers if the local information could potentially create a
multi-organization policy violation if certain conditions are present in other do-
mains. In such a case, the server uses our distributed event correlation algorithm
to check the presence of the condition on remote monitoring servers without re-
vealing information about the local infrastructure, unless a violation is actually
detected. We use a distributed naming system to identify monitoring systems
potentially containing other portions of the event sequence that could cause a
violation. When policies are complex, our policy rewrite algorithm splits the pol-
icy into a sequence of simpler conditions that can be checked by communicating
with a single monitoring server at each step. The policy rewrite is performed
independently on each server, and only local information is used to identify the
remote servers with which the local server needs to communicate to continue the
processing. We show that, using such local actions, our algorithm identifies the
same policy violations found by integrated events in a single server.

3.1 Policy Analysis

Violations of policies are rare events. For that reason, monitoring systems col-
lect a large amount of information that does not contribute to violations. Our
correlation algorithm identifies which events might contribute to violation of
cross-domain policies and shares only those events with other domains.

To perform such an analysis, we take advantage of the semantic structure
of the data in infrastructure monitoring systems. An infrastructure monitoring

Constraint Description

precedes x+ < y−

meets x+ == y−

overlaps x− < y− < x+ < y+

during y− < x− < x+ < y+

starts x− == y−, x+ < y+

finishes x+ == y+, x− > y−

equals x− == y−, x+ == y+

Fig. 2. Temporal policy constraints.
x− is the starting time of an event x,
and x+ is its end time.

1 : (E1, type, criticalService),
2 : (E1, instance, I), (E1, pname, P),
3 : (E2, type, instanceAssigned),
4 : (E2, instance, I), (E2, server, S),
5 : (E3, type, badTraffic), (E3, server, S),
6 : [E1duringE2]∧
7 : ([E2overlapsE3] ∨ [E2duringE3])
8 :→ (v1, violation, I)

Fig. 3. Policy requiring that a critical
service not be run on a physical server
that is sending malicious traffic.

system is an event-based system that collects information about the state of a
set of entities, such as computer systems, users, software programs, or network
connections. We define these entities as “resources.” A violation of a policy is
the presence of a particular state in a set of related resources (e.g., in Table 1,
the resources are a VM instance I, a software P , and a physical machine M).
Our system finds violations through the identification of a sequence of events
that corresponds to incorrect or invalid changes in the state of such resources.

We represent each event as multiple logic statements. Without loss of gener-
ality, we use the Resource Definition Framework (RDF). In RDF, each statement
is a tuple (id, property, value) composed of three parts. The first part is an event
ID, which identifies uniquely the event throughout the system. The second part
indicates the name of an event property and represents the type of information
provided by the statement (e.g., the property instance indicates id of an virtual
instance). The last part contains the value for the given property. An event is
composed of multiple statements having the same event ID. In our example, we
represent an event with ID e1 of type criticalService providing information
that a VM instance identified with m is running a program p as follows:

1 : (e1, eventType, criticalService), (e1, pname, p), (e1, instance,m),
2 : (e1, startTime, ts), (e1, endTime, te),

(1)

A policy identifies a sequence of events by expressing conditions over the logic
statements in each event. The condition is represented with a rule expressed us-
ing Datalog with negation (we assume typical Datalog stratification and safeness
conditions on the rule [4]). In addition, we use seven constraints (and their nega-
tion) to represent in interval temporal logic (ITL) all possible temporal relations
between events [1]. The constraints are listed in Fig. 2. Using such relations, we
can express constraints such as the fact that an event e1 happens before another
event e2, or that an event e1 happens while the event e2 is happening. Using
such a language, we represent directly policies expressed as conjunctions and
negations of events. We represent disjunctions by creating multiple rules, each
representing an alternative in the selection of the events that can occur.

1: function SubPolicy(V, P, PR)
2: for all e1, e2 ∈ P sharing variable V do
3: V L = vars(e1) ∪ vars(e2) // we select all variables used in the two events
4: PR = create a rule “e1 ∧ e2 ∧ [timec(e1, e2)] → partiali(V L)”;
5: // We create P’ by removing e1, e2 from P and replace them with partiali
6: P = (P \ e1 \ e2) ∪ partiali(V L)
7: if size of P ′ is 2 then return P ′

8: else
9: if P ′ has no shared variable then

10: Take two events ek, en ∈ P and generate a new random resource r
11: Add a property to ek and en to connect them to r
12: end if
13: V ′ = choose a shared variable
14: return SubPolicy(V’, P, PR)
15: end if
16: end for
17: end function

Fig. 4. Policy rewrite algorithm pseudocode.

Fig. 3 shows the formal representation of the example policy in Table 1. The
policy uses the same variable names in the values of the properties instance and
server to define an equality relation between such properties in events E1, E2

and E2, E3. Temporal conditions are expressed within square brackets, as shown
in lines 6-7. The policy is violated if the three events satisfy all conditions.

3.2 Rule Rewrite

Our distributed correlation algorithm splits across multiple servers the process
of building subsequences of events that may violate the policy. Each monitoring
server registers to manage a set of resources in a distributed naming service, and
constructs the sequences of events related to them. Servers receive events gener-
ated within the security domain about the resources for which they are registered.
We use a distributed naming registry based on Zookeeper [14] to maintain an
assignment between resources and monitoring servers within each organization,
and we expose such an assignment to external organizations through a DNS-
based interface: a server obtains the monitoring servers managing a resource
through the resolution of a name containing a short hash of the resource.

Monitoring servers identify violations by analyzing events related to the re-
sources they manage and by connecting them with events stored in other mon-
itoring servers. To identify explicitly the relation between resources, we rewrite
each policy into an equivalent set of rules called resource-based rules.

As resources involved in a policy violation are related to each other, some
events contributing to a violation carry information about two or more of the
resources involved1. Because such a relation between events and resources exists,

1 Such a condition is common among monitoring policies: if no relation exists between
events, any occurrence of certain unrelated events could create a violation.

we can split a policy into a set of rules, each composed of two events which carry
information about the same resource. As one of the two events also carry in-
formation about some additional resource (otherwise the two resources involved
would be unrelated to the other resources), we connect resource-based rules to-
gether in the following way. The consequence of a resource-based rule is a new
logic statement related to the additional resource; such a statement is used in
other rules. In the processing of events, the first rule identifies two matching
events, and creates a statement indicating that such a match is found. The next
rule takes such a statement and integrates it with an additional event; such a
process is repeated until all events in the violation sequence are matched.

Fig. 4 describes a greedy version of the algorithm we use in the policy rewrite.
Intuitively, the algorithm takes a policy P and selects two events with a resource
in common (line 2). A new resource-based rule PR is created (line 4) based on
the two events and the time constraints timec involving both of them. We replace
the two events in the original policy with the new statement partiali (line 6).
If the resulting policy P is composed of two events, the algorithm is complete
(line 7), otherwise the execution continues recursively (line 14). If the remaining
policy does not have any common variable (i.e., events are unrelated), a new
shared resource is created and added to the events (lines 9-12).

As an example, we apply the rewrite algorithm to our policy of Fig. 3. We
consider three resources I, S, and P , where the VM instance I is assigned to
the server S, and I runs the program P . Our rewrite splits the policy into
two resource-based rules. The first rule integrates the events badTraffic and
instanceAssigned related to the physical server S. Because the physical server
is managed by the cloud provider, such integration is performed on the cloud
provider system. The consequence of such a rule is a statement partial1 that
contains a reference to the instance I. We obtained the following resource-based
rule, where the variables EisT and EieT represent the start time and end time
of the events.

1 : (E2, type, instanceAssigned), (E2, instance, I), (E2, server, S),
2 : (E2, startTime, E2sT), (E2, endTime, E2eT),
3 : (E3, type, badTraffic), (E3, server, S),
4 : (E3, startTime, E3sT), (E3, endTime, E3eT),
5 : ([E2overlapsE3] ∨ [E2duringE3])
6 :→ partial1(I, S,E2sT,E2eT,E3sT,E3eT)

(2)

In the second step, we consider the statement partial1 related to VM instance
I, and we integrate the remaining events criticalService generated by the
private infrastructure. As the new statement contains all information from the
selected events, all temporal constraints and event conditions can still be applied.
The result is as follows.

1 : partial1(I, S,E2sT,E2eT,E3sT,E3eT),
2 : (E1, type, criticalService), (E1, instance, I), (E1,pname, P),
3 : (E1, startTime, sE1sT), (E1, endTime, sE1eT),
4 : [E1duringE2] → (v1, violation, I)

(3)

Because part of the information about I is contained in the cloud provider
and part in the private infrastructure, the two monitoring servers need to commu-
nicate for integrating the two events. The next section describes our mechanism
for correlating the two events while revealing information only if a match exists.

The correctness of the rewrite algorithm is shown below in Lemma 1.

Lemma 1. Given a set of rules R generated through the application of Algo-
rithm 4 to a policy P , a set of events e1, . . . , en creates a violation of P iff it
creates a violation of the set of rules R.

Proof Sketch The rewrite of the formula P creates a tree structure. Each rule
is a node in the tree. A node A is a child of a node B if the consequence of the
rule A (i.e., the partiali statement) is a condition in the parent node B. In our
example, Eq 2 is a child of Eq 3 because the consequence partial1 of the first rule
appears as a condition in the body of the second rule. We prove by induction on
such a tree. If the height of the tree is 1, then the condition is trivially satisfied
as we have only one rule and r = P . Assuming that the height of the tree is n,
we prove that the condition is satisfied for n + 1. We consider a node A in the
n tree. In the n + 1 tree, the node A is replaced with a node A′ with a child
B. B is obtained by considering two events e1, e2 from the rule in A and by
creating a new rule rj having such events as body and a new statement partiali
as conclusion. The node A′ is created by replacing events e1, e2 in A with the
partiali statement. Because the events satisfy all rules at heigh n, the rule rj is
satisfied as the conditions on events e1, e2 were satisfied in the tree n. Hence, the
statement partiali is also satisfied. Because the statement partial maintains all
the information about matched events, all conditions that were not taken and
placed in rj can still be validated in the original node. Hence, no constraints
have been eliminated in this process, and all events that satisfy the rules also
satisfy the original policy.

3.3 Event Correlation

The resource-based rules split the identification of the violation in a set of two-
event correlations. Such processing is performed independently in each monitor-
ing server: when an event matching a part of the resource-based rule is received,
the server triggers a process for identifying the presence of an event matching
the remaining part of the rule, even if the event is stored in another domain. The
server uses the naming system to identify all servers containing events related to
the common resource. For each server, it uses our matching protocol to identify
if events matching the remaining portion of the rule are present. If found, the
local event is shared. Based on the received event, the remote server repeats the
described process and interacts with other servers until a violation is found, or
no event matches the resource-based rule.

Because information about a single resource can be spread across multiple
domains (e.g., for the same host, a domain might provide network information
and another domain provide system information), servers in different domains

can be registered for the same resource. Additionally, because events carry infor-
mation about multiple resources, a server contains information about resources
for which it is not registered. Our algorithm uses a subscription process to keep
track of data about resources for which the server is not registered. When a
server s receives an event relevant to resource r that matches a rule, it contacts
the registered server for r to search for matching events. Even when matching
events are not found, the registered server maintains a reference to s, as it is
known that it contains events relevant to r. When new events are received, the
registered server contacts s for correlation. Additionally, when another server s′

requests a correlation for r, the address of s is shared, so that s′ can correlate
its events with s directly.

Theorem 1. If events e1, . . . , en satisfy all conditions of a policy, the distributed
protocol identifies the presence of a violation.

Proof Sketch: We assume that there exists a sequence of common resources
that connects all events, i.e., r1, . . . , rn such that ∀ei∃rk, ej : rk ∈ ei, rk ∈ ej . If
such sequence does not exist, our algorithm introduces new common resources to
connect all events. Lemma 1 shows the equivalence between the resource-based
rules and the policy. Hence, we show that if two events matching a resource-based
rule exist, our distributed algorithm identifies them. By construction, such events
have a resource r in common. Hence, given an event e, we need to ensure that a
server finds all events e′ that share the same resource r. We have three cases.

1. Both events e and e′ are received by servers registered for the resource r.
According to our algorithm, when an event is received, the server interacts
with all servers registered for such a resource. As both servers are registered,
the last event received would interact with the server storing the first event.

2. Event e is received by a server s registered for r, and event e′ is received by
a non-registered server s′. If the servers receive the events in the sequence
(e, e′), the arrival of e′ triggers a lookup on the naming registry, leading to
the identification of the server containing e. If the sequence is (e′, e), the
server of e is identified: however the correlation protocol returns false, as e
is not present yet, and the event e′ is not shared. In that case, s saves the
reference for s′. When the event e is received, s runs the correlation protocol
with s′ again and identifies the event e′.

3. Both events e and e′ are received by two non-registered servers s and s′. In
such a case, the first event triggers a lookup in the naming system, leading
to the identification of a server sr registered for the resource r. The correla-
tion process creates the reference to s in the server. Receiving the event e′

triggers the same process. This time, sr saves the reference to s′ and returns
the reference to s. The correlation process between s and s′ identifies the
matching events.

3.4 Privacy-Preserving Matching Protocol

The privacy-preserving matching protocol is initiated between two servers. One
peer, called the gc-client, initiates the process by picking a resource-based rule

1 : partial1(I, E2sT,E2eT),
2 : (E1, instance, I),
5 : [E1duringE2]

equality

...

p.I[0]e1.I[0]p.I[1]e1.I[1]p.I[n]e1.I[n]

<

e2.sT

<

e1.sT

e1.eT

during

GL_2L_1

match

e2.eT

equals

Fig. 5. (left) Simplified resource-based rule containing only constraints requiring input
from both events; (right) circuit blocks implementing the resource-based rule.

and an event e for which it wants to find a match. The other peer, called the gc-
server, considers all local events satisfying the local condition of the rule and, for
each event e′, executes a two-event matching protocol. To speed up the process,
the system executes the two-event matching for all pairs (e, e′) in parallel.

We use garbled circuits [9] to implement the two-event matching protocol.
Garbled circuits are a cryptographic mechanism for performing secure two-party
computation. Without the use of cryptography, one server needs to acquire data
about both events to validate all constraints (temporal and others) specified in
the rule. However, such an approach would reveal a large amount of information
to the other party, as all relevant events need to be stored on one server. Using
secure two-party computation, each party provides part of the input data and
collaborates with the other party through a distributed protocol to determine if
two events satisfy the constraints of the rule. The data provided by each party
remains hidden, and only the result of the computation is known to both. In
the last several years, garbled circuits have been shown to be one of the most
efficient methods for performing secure two-party computation [10].

Garbled circuit protocols require expressing the computation as a binary
circuit. Our system encodes events into binary strings and generates a combi-
natorial circuit based on the conditions of each resource-based rule. Circuits are
created through the connection of sub-circuit blocks that depend on the type
of constraints specified in the policy. Connections are performed through AND,
OR, or NOT gates. We consider only constraints that require input from both
events, as other constraints are validated locally.

The sub-circuit blocks in our implementation cover all temporal constraints
in Fig. 2, in addition to equality, and less-than constraints. More circuits can be
created for other types of constraints. For the resource-based rule in Eq. 3, the
transformation maintains the equality constraint between the values of the vari-
able I used in the event and the statement, and the during temporal constraint,
as shown in Fig. 5 (left). Fig. 5 (right) also shows the encoding of the policy.

Our system uses a recent implementation of the garbled circuit protocol [10]
to execute the circuit. The gc-client sends the ID of the rule to check, and
interacts with the server to construct the garbled circuit. The gc-server uses an
Oblivious Transfer (OT) protocol [15] to ask the gc-client to encrypt its input,
and uses such data to execute the encrypted circuit locally. The encrypted output

of the circuit is sent to the client for decryption. If a match is found, the gc-client
sends the matched event unencrypted. The gc-server adds the event in its local
storage, which might trigger other two-server event correlation protocols.

The system executes the privacy-preserving matching protocol for each pair
of events independently from the others. As garbled circuit computation requires
several communication round trips for the exchange of data, parallelization can
significantly improve throughput because of better utilization of the CPU.

In our interactions, the gc-server returns to the gc-client the number of events
satisfying the local conditions to determine the number of times the privacy-
preserving matching protocol is executed. If the number reveals information
about the state of the infrastructure, the monitoring server can report any num-
ber larger than the given value, so that the number of events cannot be used to
make any inference. Once the local events are exhausted, additional computa-
tions are performed with invalid values to ensure that no matching is possible.

3.5 Privacy Analysis and Limitations

From a privacy perspective, the security property of the two-event matching pro-
tocol shows that, for two-event policies, we share only events that create viola-
tions. This is the minimum level of information sharing that we can have between
two organizations [20]. However, when the complexity of the policy increases and
multiple resource-based rules are needed, sequences of events matching a single
resource-based rule need to be shared to process the next resource-based rule. In
such a situation, we limit information sharing by first selecting, when possible,
resource-based rules that are rarely matched.

The interaction between monitoring servers leaks additional information that
can be used to make inferences on the state of the remote party, even if no explicit
sharing occurs. The request for a two-party correlation reveals the hash of the
common resource and the policy involved. The hash is intentionally kept short,
so that conflicts and false positives are possible, making the identification of the
resource ID hard. The presence of an interaction, even if leads to no matched
events, can still reveal that a subsequence of events matching a portion of the
policy is present on the server. To counter such an inference, we add spurious
requests with random events to ensure that such knowledge cannot be inferred.

The implementation of secure two-party computation used in our system
relies on the assumption of an honest-but-curious attacker [9]. Such an attack
model assumes that the two parties interact according to the protocol, and do not
provide false information about their own systems. In the interaction between
organizations, additional mechanisms can ensure that false information is not
provided. The periodic auditing currently performed for ensuring compliance to
regulations could also validate recoded logs of the interactions. Such logs create
an audit trail that could dissuade organizations from providing false information.
In addition, techniques have been proposed to validate the received information
through independent information sources [21] to ensure its correctness. Moreover,
progress has been made in building secure two-party computation that applies
to semi-honest adversaries [11]. Such advance can be integrated to our solution.

4 Experimental Evaluation

Our evaluation measured the reduction in the amount of information exchanged
when our event-correlation method was used, and the event rate obtained with
our two-event matching protocol. We implemented the system in Java and used
a garbled circuit protocol implementation by Huang et al. [10], with modifica-
tions performed to improve significantly parallelism. We ran our experiments on
Amazon EC2 m1.large instances (7.5 Gb memory, 4 compute units), an instance
type which computation capabilities fall in the middle of the EC2 spectrum.

4.1 Reduction of Event Sharing

We measured the reduction in the information shared between domains. Re-
sources were partitioned across servers, and events were distributed randomly.
Information sharing occurs when events about the same resource are stored in
different domains. As the occurrence of such a condition is policy- and event-
dependent, we evaluated our solution in different points in the space by changing
three critical parameters. The first one is the frequency at which two events in
different domains create a partial policy violation. The second parameter is the
fraction of the infrastructure under the control of each organization. The third
parameter is the number of security domains managing the infrastructure.

We measured the performance of our encrypted communication (encr) with
rules of different complexity (2-event rule, 4-event rule). We compared it
with a clear-text solution (clear-txt) that sends events related to a resource to
the monitoring servers managing it (even if they are in a different domain) [19],
and with the minimum need-to-know information (min).

First, we analyzed how the frequency with which events create partial policy
violations affects the amount of information shared. We created events so that
each pair of events in a policy has a given probability of referring to the same
resource, and we randomly distributed them across domains. We show the results
in Fig. 6. Our system significantly outperformed the baseline (i.e., clear-txt)
solution and, for two-event polices, the fraction remained equal to the theoretical
minimum (min). As we measure events shared over total events, the theoretical
minimum number of events for the 4-event rules is smaller than the one for the
2-event rule: in the optimal case, a single interaction can summarize information
about multiple events and it is counted as one event.

The distribution of resources across domains affects the fraction of events
shared, as shown in Fig. 7. To test the system under less than ideal conditions,
we created events that partially matched policies with a probability of 75% and
we distributed them randomly to each server. The highest information sharing
occurred when each organization had half of the resources, while the amount of
event shared is reduced when more resources are managed by a single domain.

We measured the fraction of events stored at each server under different
conditions (see Fig. 8). We considered both complete events and events that can
be inferred from the presence of partial statements. Increasing the number of

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
h

a
re

d
 m

s
g

s
 /

 t
o

ta
l
m

s
g

s

% matching

encr, 2 event rule
min, 2 event rule

encr, 4 event rule
min, 4 event rule

clear txt, 2 event rule

Fig. 6. Probability of matching events
affects the fraction of events shared.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s
e

n
t

m
s
g

s

distribution

encr, 2 event rule
min, 4 event rule

encr, 4 event rule
clear txt, 2 event rule

Fig. 7. Fraction of resources allocated
to a monitoring server. 2 servers

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

a
v
g

 f
ra

c
ti
o

n
 e

v
e

n
t

s
to

re
d

servers

2 doms, 2-event rule
3 doms, 2-event rule
4 doms, 2-event rule
2 doms, 4-event rule

clear-txt, 2 doms, 2-event rule
ideal, 1/#servers

Fig. 8. Average fraction of events
known to each server.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 2 4 6 8 10 12 14 16

c
o

rr
 /

 e
v
e

n
t

sec domains

2 event rule

3 event rule

4 event rule

Fig. 9. Server load, multiple security
domains. One server per domain.

security domains reduced the average number of events in each server. In all
cases, our system provided a significant improvement over a clear-text solution.

To summarize, our experiment showed that while the performance of the
system depends on the conditions of the policy and the frequency of matching
events, our solution still outperforms a baseline solution. In many cases, the
amount of information shared is close to the minimum possible. Best conditions
occur when events in different domains creating a policy violations are not fre-
quent, and when a significant fraction of interacting resources are stored within
the same security domains, so that most violations can be found locally.

4.2 Performance Evaluation

To evaluate computation overhead, we measured the average number of secure
two-party computations performed by each server, as shown in Fig. 9. We varied
the number of domains. We considered the ratio between two-event correlations
and events received. We saw that increasing the number of security domains
increases the number of two-event correlations performed, as it increases the
likelihood that interacting resources are managed by external servers.

We measured the ability of parallelizing and of distributing the computation
by measuring the average number of computation per-server, as shown in Fig. 10.
We injected a constant number of events into the system and we measured the
ratio between the average number of two-event correlations performed on each

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 3 4 5 6 7 8

g
c
 /
 t
o
ta

l
e
v
e
n
ts

total # servers

2 domains
4 domains

Fig. 10. Distribution of load with the
increase of the number of servers within
each domain.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 500

ra
te

 [
e
v
e
n
t/
s
e
c
]

parallel matchings

AFTER us-east
AFTER us-east <-> us-west

DURING us-east
DURING us-east <-> us-west

Fig. 11. Delay in the processing of an
event as a function of the level of con-
currency in the server.

server and the total number of events. When we increase the number of moni-
toring servers within each domain, the average number of per-server two-event
correlations decreases as resources are distributed across the multiple servers.

To demonstrate the practical feasibility of our system, we measured the event
rate achievable using our prototype implementation on an Amazon EC2 deploy-
ment. We used 64 bits for representing the resource name in binary form, and 32
bits for representing each event timestamp. Such values are sufficient to reduce
collisions and to maintain low circuit complexity. Because the performance of
garbled circuit protocols depends on the round-trip communication delays, we
measured the performance between two servers within the same geographical re-
gion, and between servers in different regions. The former represents conditions
found when monitoring servers are co-located within the same provider.

We measured the throughput in event correlation per second and we show
the results in Fig. 11. The remote dataset was split into groups of 100 events, and
the processing of each group occurred in parallel. When using multiple threads,
we increased the rate up to 400 correlations per second on a single server.

We evaluated the effects of the policy constraints on the system’s throughput.
We evaluated two circuits: one checking for an equivalence between properties
and for a constraint after ; and a more complex circuit checking for an equivalence
and a constraint during. The first one had an input size of 192 bits: 64 bits for
each property name and 64 bits for two timestamps. The second circuit used 256
bits: 64 bits for each property name, and 128 bits for the four timestamps. The
complex circuit reduced the throughput by about 30%.

We evaluated the effect of colocation of servers on event throughput. We
considered servers co-located in the us-east region, and servers placed in us-east
and us-west. Without concurrency, co-located servers for the after constraints
obtained a rate of 9.5 event/s. When servers are located in different regions, the
rate was 1.4 event/s. However, increasing the concurrency significantly increased
the event rate. With 500 concurrent executions, co-located servers obtained a
rate of 435 event/s, while servers in different regions obtained 337 event/s, with
a reduction by about 22%. The before constraint had similar results.

In summary, our experiments demonstrated that our system is capable of
performing hundreds of correlations per second on a single server, and that
multiple servers can run in parallel to further improve the performance. This kind
of event rate makes our system practical for monitoring system configuration
changes and detecting complex attacks. It would scale to, for instance, taking a
few seconds to validate the effects of a local configuration change on a remote
infrastructure that consists of thousands of servers.

5 Conclusion

This paper introduced a distributed monitoring architecture for detecting vio-
lations of policies in multi-domain systems. The system uses secure two-party
computation to reduce the amount of confidential information shared outside
each security domain: information is shared only after verifying that it can po-
tentially contribute to a violation. Our analysis and experimental evaluation
show that the performance of our technique is adequate for configurations and
other discrete operational state. Our approach is complementary to techniques
that can process a larger amount of numerical data through aggregation and
anonymization, such as network traffic information. We show that our technique
limits the information shared to a minimal need-to-know for simple policies, and
can significantly reduce the amount of information shared for complex policies.

Future work should introduce more optimizations in complex policies by
changing the order of correlations so that the frequency of events and the willing-
ness of the organization to share are taken into account. Additionally, reducing
information stored in other domains can increase the security of the overall sys-
tem, as security breaches in one of domains would provide little information to
attackers about other systems. However, more work is needed to extended the
system beyond the honest-but-curious attack model. For example, redundancy
would provide mechanisms for recognizing compromised monitoring servers.

References

1. J.F. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832–843, 1983.

2. D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow. Blueprint
for the intercloud-protocols and formats for cloud computing interoperability. In
ICIW’09, pages 328–336. IEEE, 2009.

3. M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos. Sepia: Privacy-
preserving aggregation of multi-domain network events and statistics. USENIX
Sec, 2010.

4. S Ceri, G Gottlob, and L Tanca. What you always wanted to know about Datalog
(and never dared to ask). Knowledge and Data Engineering, IEEE Transactions
on, 1(1):146–166, 1989.

5. David Grawrock. The Intel Safer Computing Initiative, chapter 1–2, pages 3–31.
Intel Press, 2006.

6. Grit Denker, Ashish Gehani, Minyoung Kim, and David Hanz. Policy-Based Data
Downgrading: Toward a Semantic Framework and Automated Tools to Balance
Need-to-Protect and Need-to-Share Policies. In IEEE POLICY, 2010.

7. David Evans and David Eyers. Efficient Policy Checking across Administrative
Domains. IEEE POLICY, 2010.

8. C. Giblin, S. Müller, and B. Pfitzmann. From regulatory policies to event moni-
toring rules: Towards model-driven compliance automation. IBM Research Zurich,
Report RZ, 3662, 2006.

9. O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications, vol-
ume 2. Cambridge university press, 2004.

10. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation
using garbled circuits. In USENIX Security Symposium, 2011.

11. Y. Huang, J. Katz, and D. Evans. Quid-pro-quo-tocols: Strengthening semi-honest
protocols with dual execution. In IEEE Symposium on Security and Privacy, 2012.

12. Jun Ho Huh and John Lyle. Trustworthy Log Reconciliation for Distributed Virtual
Organisations. In Trust ’09. Springer, 2009.

13. Jun Ho Huh and Andrew Martin. Towards a Trustable Virtual Organisation. In
IEEE International Symposium on Parallel and Distributed Processing with Appli-
cations, pages 425–431. IEEE, August 2009.

14. P. Hunt, M. Konar, F.P. Junqueira, and B. Reed. Zookeeper: Wait-free coordina-
tion for internet-scale systems. In USENIX ATC, volume 10, 2010.

15. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. Advances in Cryptology-CRYPTO 2003, pages 145–161, 2003.

16. A.J. Lee, P. Tabriz, and N. Borisov. A privacy-preserving interdomain audit frame-
work. In WPES. ACM, 2006.

17. Patrick Lincoln, P. Porras, and V. Shmatikov. Privacy-preserving sharing and
correction of security alerts. In USENIX Security Symposium, 2004.

18. F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf. Nist cloud
computing reference architecture. NIST Special Publication, 500:292, 2011.

19. M. Montanari and R.H. Campbell. Confidentiality of event data in policy-based
monitoring. In Dependable Systems and Networks (DSN), 2012. IEEE, 2012.

20. M. Montanari, L.T. Cook, and R.H. Campbell. Multi-organization policy-based
monitoring. In IEEE POLICY, 2012, 2012.

21. M. Montanari, J.H. Huh, D. Dagit, R.B. Bobba, and R.H. Campbell. Evidence
of log integrity in policy-based security monitoring. In Dependable Systems and
Networks Workshops (DSN-W), 2012. IEEE, 2012.

22. Christine M O’Keefe. Privacy and the use of health data - reducing disclosure risk.
In Health Informatics, 2008.

23. Ruoming Pang. A high-level programming environment for packet trace
anonymization and transformation. In ACM SIGCOMM, Germany, 2003.

24. Payment Card Industry (PCI) Security Standard Council. Data security standard
version 1.1, 2006.

25. R. Ross, S. Katzke, A. Johnson, M. Swanson, G. Stoneburner, G. Rogers, and
A. Lee. Recommended security controls for federal information systems (final
public draft; nist sp 800-53), 2005.

26. Jatinder Singh, Luis Vargas, Jean Bacon, and Ken Moody. Policy-Based Informa-
tion Sharing in Publish/Subscribe Middleware. IEEE POLICY, 2008.

27. Adam Slagell, Kiran Lakkaraju, and Katherine Luo. Flaim: A multi-level
anonymization framework for computer and network logs. In LISA, 2006.

